
Welcome to Georg’s Brave GNU
World. I hope to have found an

interesting mix of topics this month.
Starting in the heart of technology

with two very interesting programming
languages.

Sather

GNU Sather [5] is an object oriented programming
language that was originally branched off from Eiffel,
but it has been changed in so many ways since that it
must be regarded as an independent language.

The beginning of GNU Sather was as a scientific
project at the ICSI, Berkeley, where it was distrib-
uted under a license that did not quite qualify as a
Free Software license. But after development was
stopped for financial reasons in 1998 a bunch of
people were able to convince the officials at the ICSI
to release the last version under the GPL/LGPL. This
made it possible for GNU Sather to become an offi-

cial GNU Project. Among the remarkable things
about GNU Sather is its revolutionary interface con-
cept where class interfaces are completely separat-
ed from their implementations; this makes multiple
inheritance very easy. It is also possible to change
the underlying code completely without touching
the interface, should it become necessary.

The current maintainer of GNU Sather, Norbert
Nemec, highlights the iterator concept, which
allows all kind of loop concepts that other lan-
guages use to be implemented with a single break-
statement. His view is also that GNU Sather is not
just “another design study” - it is a language that
has been designed for speed and comfort for the
developer right from the start.

The current status of GNU Sather should proba-
bly be best described as “almost ready for day-to-
day use.” The interface to C and Fortran is easy and
well-documented, so practically everything should
be possible. The biggest weakness right now is the
compiler which doesn’t use the possible optimisa-
tions and has to be called “buggy.” Obviously writ-
ing a new compiler is on top of the task list - but
this will take some more time. The library also needs
some more work, which is currently being done by
the University of Waikato.

Despite these rough edges, developers interest-
ed in object oriented programming should check
out GNU Sather. If nothing else it’ll be an interesting

COMMUNITY BRAVE GNU WORLD

124 LINUX MAGAZINE 10 · 2000

The monthly GNU-column

BRAVE
GNU

WORLD
Georg C. F. Grave reports on the current

developments and progress within the

GNU-Project and tries to explain its

philosephy. In this issue, you can read

about GNU Sather, Ruby, a386, Guppi.

experience. Especially the integrated support for
parallel computing (multi-threading up to TCP/IP
clusters) and the library that was based on interna-
tionalisation since it’s inception should make this an
excellent tool once the latest problems have been
solved.

Ruby

Ruby [6] by Yukihiro Matsumoto is another object-
oriented programming language; it started in 1993
when the author wasn’t able to find an object ori-
ented scripting language and made the decision to
write one himself.

The name Ruby was chosen because the author
was looking for another “jewel name” to symbolize
the closeness to Perl. His declared goal is to make
Ruby the successor to and replace Perl. To achieve
this he took the strengths of languages like Perl,
Python, Lisp and Smalltalk and tried to incorporate
these into Ruby.

Just like Perl, Ruby is very good at text process-
ing and additionally gains from it’s very broad object
orientation. All data in Ruby is an object - there are
no exceptions. The number “1,” for instance, is an
instance of the “Fixnum” class. It is possible to add
methods to a class at runtime - even to an instance
if need be. These possibilities make Ruby very flexi-
ble and extensiive. Additionally, it supports iterators,
exceptions, operator overloading, garbage collec-
tion and much more that one likes to see in a lan-
guage. In order to be able to replace Perl, it is also
very portable and runs under GNU/Linux (and other
Unices) as well as DOS, MS Windows and Mac.

Ruby has CGI-classes that allow easy CGI pro-
gramming, and modules for the Apache also exist:
eRuby (embedded Ruby) and mod_ruby. It contains
a well thought-out network socket class, and
thanks to Ruby/Tk and Ruby/Gtk it is possible to
implement GUIs easily. There are also special fea-
tures for the treatment of XML and an interface to
the expat XML parser library.

Finally Ruby supports multithreading indepen-
dently of the operating system - even under MS-DOS.
Despite this complexity the syntax has been kept as
simple as possible (inspired by Eiffel and Ada).

Ruby can be distributed under the GNU General
Public License or a special license that gives users
stronger “proprietarisation rights,” but it might
qualify as a Free Software license - although this
remains to be thoroughly checked.

Although its features have probably mostly
technical value, I do think that even non-program-
mers could be interested in developments in this
area.

a386

a386 [7] is a library by Lars Brinkhoff that has a vir-
tual Intel 386 CPU running in protected mode as a
“Virtual Machine” (VM). This should be of most use

to kernel hackers and scientists, but might also
prove interesting for people just wanting to check
out another operating system within their existing
system.

Compared to similar projects like the Brown
Simulator or plex86, a386 has the advantage of
running privileged operations faster because they
are implemented as function calls or inlined code.
Additionally it aims for portability - working other
CPU architectures as well as other operating sys-
tems.

Currently the task at hand is to enhance the Lin-
ux port, but in the medium term he seeks to create
a NetBSD & HURD port as well as making a386
run on these operating systems. The long term goal
is to take the experience gained with a386 to create
a new machine model which will be an abstraction
of the wide-spread workstation/server CPUs and to
implement this as a C library and a “Nano-Kernel”
running directly on the hardware.

Of course everything is distributed under the
GNU General Public License and if you’re interested
in these things, a look on the project’s homepage
might be a good idea [7].

But now I’d like to talk about things of more
direct importance to the end-user.

Guppi

Strictly speaking, Guppi [8] is three things in one.
First of all it is an application for data analysis and
the creation of graphs and charts. Then it is a
Bonobo component which allows embedding this
functionality in other applications, and finally it’s a
set of libraries that allows any GNOME application
to use it.

The application itself is definitely important for
everyone relying on visualisation and analysis of
empirical data - especially scientific users. In fact
Guppi is the only program of its kind based on full
GNOME integration from the start, and so it seems
that it is slowly becoming the GNOME standard for
visualisation. Thus, it is not surprising that the
GNOME spreadsheet Gnumeric and the finance
manager GnuCash rely on Guppi.

COMMUNITYBRAVE GNU WORLD

10 · 2000 LINUX MAGAZINE 125

Info

[1] Send ideas, comments and questions to column@gnu.org
[2] Homepage of the GNU Project http://www.gnu.org/
[3] Homepage of Georg’s Brave GNU World http://www.gnu.org/brave-gnu-

world/
[4] “We run GNU” initiative http://www.gnu.org/brave-gnu-

world/rungnu/rungnu.en.html
[5] GNU Sather home page http://www.gnu.org/software/sather
[6] Ruby home page http://www.ruby-lang.org/
[7] a386 home page http://a386.nocrew.org/
[8] Guppi home page http://www.gnome.org/guppi
[9] Jon Trowbridge trow@gnu.org

■

According to Jon Trowbridge, current maintain-
er of Guppi, the big advantages can be summed up
in four points. First of all Guppi is scriptable, the
internal API is available via Guile and Python - so it is
possible to solve rather complex problems without
having to program in C. Second Guppi has a very
flexible data import filter with good guessing capa-
bilities as to how a file should be read without inter-
vention by the user. Third a lot of the functionality is
broken down into plugins which makes it easy to
extend, and finally Guppi has a WYSIWYG interface
that should not give anyone trouble.

But the end-user should still be a little careful -
right now Guppi is still in very active development
and the user interface especially is not yet complete.
There are also some functions lacking and the docu-
mentation is somewhere between sparse and non-
existent, so only expert users should consider it for
daily use.

Other members of the Guppi team are Jody
Goldberg and Michael Meeks who work on the
GNOME integration, Andrew Chatham, who takes
care of the Python-binding, and I should also men-
tion Havoc Pennington who doesn’t work actively on
Guppi anymore but did a majority of the work in the
early phase. Anyone interested in development is
very heartily invited to get in touch with Jon [9] - he
also informed me that his current location is close to
the University of Chicago (USA) and that he’d be
interested in meeting more GNOMEs in this area.

...the end

Okay. That should be enough for this month… as
usual I’m encouraging you to send your ideas,
comments, questions and topic suggestions via
email [1]. ■Gupy in action …

COMMUNITY BRAVE GNU WORLD

126 LINUX MAGAZINE 10 · 2000

