
Name allocation and resolution in the Internet and
other IP-based networks has a long history. Since
32-bit addresses, by which network nodes are actu-
ally addressed, are hard to remember, computers
quickly began to be given names. At first people
made do by setting up a file, HOSTS.TXT, which
allocated a name to each IP address in the network.

This file, which is still in use today (and is called
in Linux /etc/hosts), contains an IP address, an allo-
cated host name and optional alternative aliases by
which this computer can also be accessed. In the
early days of the ARPANET, with a few dozen com-
puters, that was adequate. Even today in some sim-
ple intranets this is still a workable solution, but not
in the modern hierarchical structure of the Internet
(the successor to ARPANET). So pretty soon the
search was on for a solution which, firstly, makes the
most of the advantages of this hierarchy and sec-
ondly, makes it unnecessary to maintain separate,
but nevertheless consistent, host files on each com-
puter. This search resulted in several Requests For

Comments (RFCs), including RFC 1035 (Domain
Names – Implementation and Specification) and RFC
1034 (Domain Names – Concepts and Facilities).

The Domain Name System

To make it possible to manage the millions of com-
puters of the Internet a hierarchical name structure
was introduced. The root of this name is a period
”.”, followed by one of the global top level domains
laid down by the IANA (Internet Assigned Numbers
Authority), for example com, edu, org, uk or is. For
each of these name domains, in turn, various
organisations assign subordinate domains. Thus, for
example, Nominet is responsible for all names in the
uk domain.

If you register a name, you can yourself create a
hierarchy with as many additional subdomains as
you like, i.e. subordinate names. The ”.”, which
specifies the root, is left out in everyday use, which
means that for example penguin.production.ja-
guar.com uniquely identifies a computer called pen-
guin, which is part of the subdomain production,
which in turn are subordinate to jaguar and the top
level domain com.

When TCP/IP has been installed on a computer
(which is the case for all computers running Unix or
Linux computers) then at least one name server
must be specified. This name server will resolve the
host names into IP addresses. Often, particularly in
the case of dial-up connections using the PPP proto-
col, the name server is assigned dynamically. Either
way, a name server must be known to the computer
because only a name server can convert host names
into IP addresses, and only IP addresses can be used
for communication across the network.

If an application wants to resolve a host name to
determine the associated address, the procedure that
is followed is governed by the file /etc/host.conf, in
which the search sequence is defined. Normally, the
file /etc/hosts will be searched first. After that, if no

KNOWHOW

66 LINUX MAGAZINE 10 · 2000

BIND

Configuration and operation
of DNS servers

NOT JUST
A NUMBER

STEPHAN LICHTENAUER

The nameserver BIND is

practically standard under

Unix and Linux.

Unfortunately, it is very

sparsely documented.

The man pages for example

are at best useful as a

reference. And yet well-

maintained name servers

are essential for users

of all Internet services in

any organisation.

matching name has been found there, the name
server is contacted. The name server then either
processes the enquiry itself, if its database holds the
data for the name domain in question, or it passes it
on to the next server in the hierarchy.

Let’s look at an example. If the server responsible
for jaguar.com receives an enquiry for
nathan.rover.com, it will pass on the enquiry to the
server for the entire top level domain com. On the
other hand it could resolve venus.production.ja-
guar.com by itself. The com server knows the
address of the rover.com name server and delivers
this to the enquirer, which can then repeat the
enquiry to it.

The BIND8 IP-Name server packet

The Internet Software Consortium (ISC) designed
and implemented the domain name system which
has been the standard used to date. This system is
called BIND (Berkeley Internet Demon). Although
Berkeley is actually using BSD as its operating sys-
tem, BIND is now used on practically all important
platforms and included in almost all Unix systems
and Linux distributions. With the change from
BIND4 to BIND8, the current version, a major alter-
ation (resulting in a certain amount of simplifica-
tion) of the configuration occurred.

In BIND slang a domain is referred to as a zone.
The server responsible for the zone has the data-
base containing the master data. Any available sec-
ondary servers, which intervene in the event of a
failure or overload of the primary master server,
have a copy of this data (the slave zone.) When
there is any change in the configuration of the zone
the slaves are automatically provided with the new
domain data by the master.

The server consists of a daemon process called
named, which is usually started or stopped on con-
figuration in System V style by a boot script (usually
/sbin/init.d/named.) If the configuration is changed,
the daemon process must be persuaded using kill -
HUP to do a new read-in of the files. Any error mes-
sages and the results of communication with the
other name servers, which must be informed of the
changes, are found in the system log. So that these
messages are not overlooked, it is recommended
that this file is always displayed on a console using
the command tail -f /var/log/messages.

Configuration of named

BIND8 has a central configuration file /etc/named.conf,
which, apart from general parameters, determines
the zones that are controlled and their associated
zone configuration files (Listing 2).

Slave zones

Operating a secondary name server – in other
words, controlling a slave zone – is not difficult.

Once the brief zone definition has been made in
/etc/named.conf, which defines the master server,
and entering the name of a file in which BIND is to
store the data, the job is done. All necessary data-
base updates are fetched automatically by named,
as long as the associated primary server is correctly
configured.

Zone files

For those domains for which your name server is
configured as the primary server, however, more
care is needed. In particular the divided, hierarchical
architecture of the Internet domain concept does
not permit trial and error methods of configuration.
You must bear in mind that you have no access
whatsoever to most servers which have zone data
defined by you, whether it is a secondary server (for
example your ISP’s name server), or some other serv-
er which after a query has temporarily stored your
data in its cache. You yourself can to a large extent
define the lifetime of such invalid details through
the time-to-live of the records defined by you (we
will show you how later.)

Usually, you will define the root zone and at
least two master zones. For each of the master
zones there are two database files; one for resolu-
tion of names into addresses and one for the
reverse procedure of resolving addresses into associ-
ated names (reverse lookup). Apart from this there
is a file with the addresses of the root name servers
which control the data on the top level domains and
which your name server may need to contact as a
last resort. This file should be checked at regular
intervals to make sure it is up to date; it can be
obtained from

Fig. 1: The position of
penguin.production.jaguar.com
in the name hierarchy
of the Internet

KNOWHOWBIND

10 · 2000 LINUX MAGAZINE 67

Listing 1: HOSTS.TXT-Example file
192.168.1.1 poseidon.qthree.uk mysql
192.168.1.2 venus.qthree.uk ftp mail www
192.168.1.3 client1.qthree.uk
192.168.1.4 client2.qthree.uk

ftp://rs.internic.net/domain/named.root. Copy this
file into the directory with your zone files (usually –
and as stated in the sample configuration file – this
is /var/named) and give it the name which you have
also specified in named.conf (here, root.hint).

As the starting point for your own zone files, if

your /etc/hosts file is large, you can use the tool
h2n. This tool converts /etc/hosts files into BIND
zone databases. You can execute this program at
regular intervals if your /etc/hosts file always con-
tains the latest data. Usually, however, zone data-
banks are managed by hand.

KNOWHOW

68 LINUX MAGAZINE 10 · 2000

BIND

/* Sample configuration for BIND 8.1 or new
* install as /etc/named.conf
*
* Author: Stephan Lichtenauer
* Note: All IP addresses/host names have been found
*/

#
General server parameters
#
options {

Directory in which the zone databanks are stored
directory "/var/named";
by default in case of errors in the master zone files

the server will be stopped
check-names master warn;

pid-file "/var/named/slave/named.pid";

datasize default;
stacksize default;
coresize default;
files unlimited;
recursion yes;
multiple-cnames no;

by default at Port 53 there is a listen-out for all
available

interfaces, following commands could
specify this more precisely:
#listen-on { 5.6.7.8; };
#listen-on port 1234 { !1.2.3.4; 1.2/16; };
query-source port 53;

};

#
Logging options for various problems:
#
logging {

category lame-servers { null; };
category cname { null; };

};

#
Pre-defined "Access Control Lists" (ACL):
"any" Lets any hosts in
"none" Prohibits all hosts
"localhost" Allows connections from this computer
"localnets" Allows connections from LANs (192.168.0.0/16)
#
Define own ACL:
acl secondaries { 193.158.2.17; 152.133.12.18; };

#
With the »server« instruction, other servers can be assigned
certain properties.
#
A server marked as »bogus« is never queried
server 193.158.24.28 { bogus yes; }
if the other server has also installed at least BIND 8.1,
zones can be transferred more compactly.
server 193.158.24.29 { transfer-format many-answers; }

#
Defining the root zone
#
zone "." IN {

type hint;
file "root.hint";

};

#
Defining the »localhost« zone
#
zone »localhost« IN {

type master;
file "localhost.zone";
check-names fail; // errors here would be fatal
allow-update { none; }; // of local interest only

};

#
Defining of reverse lookup for local host (addresses into names)
#
zone »0.0.127.in-addr.arpa« IN {

type master;
file "0.0.127.zone";
check-names fail;
allow-update { none; };

};

#
Defining reverse lookup for an address zone
#
zone "36.158.193.in-addr.arpa" IN {

type master;
file "36.158.193.zone";
check-names fail;
allow-update { none; };
allow-query { any; };
allow-transfer { secondaries; };
notify yes;

};

#
A master zone
#
zone "jaguar.com" IN {

type master;
file "jaguar.com.zone";
Restrict zone transfers, to make work harder for
spies
allow-transfer { secondaries; };
allow-update { none; };
allow-query { any; };
notify yes;

};

#
A slave zone
#
zone "rover.com" IN {

type slave;
file "slave/db.rover.com";
masters { 194.238.99.128; };

};

Listing 2: Example of a /etc/named.conf file.

As an example, let’s set up the file for the
domain jaguar.com. According to our details in
/etc/named.conf this must be stored under
/var/named/jaguar.com.zone (Listing 3).

The ”SOA” record represents the start of the
database file. jaguar.com. defines the described
domain. Take note at this point of the dot on the
end, which stands for the root name domain. You
must always write this dot afetr all fully qualified
names, otherwise named assumes the name has yet
to be completed and appends the current domain.

poseidon.jaguar.com. (again with a dot at the
end) stands for the current computer, on which
named is running. root.poseidon gives the email
address of the DNS administrator, with the dot
standing for the otherwise usual ”@”. Since this
time the name does not end with a dot, BIND com-
pletes the entry, making it
root.poseidon.jaguar.com., which represents the
mailing address ”root@poseidon.jaguar.com”.

So that the other name servers storing your data
(either as secondaries or in their cache) can check
that they are up to date, you must specify a serial
number for the data record, which you increment
with each amendment. The concrete format is up to
you; often the current date is used (as in this case 7
Jan 2000 is represented as 20000107.)

The refresh value states in seconds how often
the secondary name servers should ask for updates
(in this instance, ten hours). If the primary server
should fail to answer this request in retry (in this
case: 1800) seconds a new attempt will start. If
within the period defined by expire no response is
received from the primaries, the secondary server
stops answering requests for this domain on the
basis that no answer is still better than a wrong one.

TTL (time to live) is sent with all answers and
shows how long the data record will remain valid
and can remain in the cache. Choose this value with
care, as with large values changes (and corrections
for typing errors) take a very long time to spread
through the network.

The following data records are each named
according to the third column of the zone file (Listing
3). The two lines following the SOA record list the
name servers (NS) for the domain. The first is the
computer on which the master zone is located, then
follow all the secondaries (just one in this case.)

The file then continues with the MX records.
These state the addresses of the MaileXchanges, in
other words, the mail servers. The number before
the address is the priority value, representing a sort
of inverse priority of this server. An SMTP server
which wants to send an email first tries to connect
to the server with the lowest priority value. Only if
this fails will it look further down the list according
to the nearest priorities.

A-records define the mapping of the host
names onto IP addresses. Thus poseidon for exam-
ple is completed, making it into
poseidon.jaguar.com. If the request matches this

name, 193.158.36.58 is returned as the associated
address.

CNAME data records make aliases available.
”news” – since, without a dot at the end after com-
pletion it becomes news.jaguar.com – is translated
into venus.jaguar.com and the A-record associated
with this host name is searched for and evaluated.

The zone for the localhost (Listing 4), which has
to be included in every configuration, corresponds
to the same syntax as the file for jaguar.com, except
that the scope is considerably more manageable.
However, a few small abbreviations are used: With
$ORIGIN, localhost. is named as a macro for the cur-
rent domain, to which the @ symbols then refer.

Reverse Look-ups

Some programs, such as for example telnet, try to find
out the host names associated with IP addresses. These
reverse lookups are resolved by BIND using in-addr.arpa
zone files (Listing 5). In our file /etc/named.conf we
have defined a zone 36.158.193.in-addr.arpa IN … ,
containing the addresses 193.158.36.0/24 (thus as a
maximum in the domains 193.158.36.0 to
193.158.36.255). For historical reasons, IP-addresses
for reverse-lookups are also written backwards (so no
printing errors…) and must end in in-addr.arpa (and in
the zone file, of course, with in-addr.arpa.).

The SOA-Record has the usual format (where
one can also see the possible, self-explanatory and
very practical abbreviations for units of time), only
here the reverse lookup is defined. For this reason
the zone name is 36.158.193.in-addr.arpa. With
NS, again, the primary and secondary name servers

KNOWHOWBIND

10 · 2000 LINUX MAGAZINE 69

Listing 3: The zone file /var/named/jaguar.com.zone
jaguar.com. IN SOA poseidon.jaguar.com. root.poseidon

(20000107 ; serial
36000 ; refresh
1800 ; retry
3600000 ; expire
86400) ; time to live

jaguar.com. IN NS poseidon.jaguar.com.
IN NS pns.bt.uk.

jaguar.com. IN MX 1 193.158.36.59
IN MX 2 193.158.36.60

localhost IN A 127.0.0.1
poseidon IN A 193.158.36.58
phoenix IN A 193.158.36.59
venus IN A 193.158.36.60

ftp IN CNAME phoenix.jaguar.com.
www IN CNAME poseidon.jaguar.com.
ns IN CNAME poseidon.jaguar.com.
news IN CNAME venus.jaguar.com.
irc IN CNAME venus.jaguar.com.

jaguar.com. IN SOA poseidon.jaguar.com. root.poseidon
(20000107 ; serial
36000 ; refresh
1800 ; retry
3600000 ; expire
86400) ; time to live

are defined, then come the PTR data records. These
are the counterpart to the A-Records of forward res-
olution and allocate the host names to the IP
addresses. Great care must be taken here to ensure
consistency between the A- and the associated PTR-
records. Together with the reverse-mapping file for
the 127.0.0.0-address zone, this makes configura-
tion complete. Since the 1 in the last line is not fully
qualified and does not end with a dot, it is automat-
ically completed to make 1.0.0.127.in-addr.arpa.

Troubleshooting

As already mentioned, the fact that data is distrib-
uted to all possible configuration files and in the
next step to all possible computers does not make it
easy to find and to correct any errors. The most fre-
quent error – apart from not rebooting the named-
daemon – is forgetting, after making modifications,
to increment the serial numbers of the zones, so
that the connected computers do not notice that

something has changed. You must also bear in
mind that due to caching it may take some time
before your amendments spread through the net-
work (so at this point think of a reasonable TTL val-
ue.) In the event of problems with other zones the
best thing to do is use whois or finger to find the
contact information on the administrator responsi-
ble and speak to them.

You will find many errors as soon as you look at
the system log (/var/log/messages) after a new read-
in of the configuration. Syntax errors are also nor-
mal, if named quits in such a situation (this should
not be the case if you have specified in
/etc/named.conf check-names master warn). Check
whether your fully qualified names in the zone files
end in a dot (thus for example poseidon.qthree.uk.
If you write poseidon.qthree.uk, this will be com-
pleted as poseidon.qthree.uk.qthree.uk., which is
probably not what you want).

If applications such as telnet, which perform
reverse look-ups, run very slowly, reverse look-up is
probably not correctly configured. Test this with the
tool nslookup, found in both Unix and Linux, and
which acts as an all-purpose tool in the toolbox of
the BIND administrator. In the following example
the allocation of addresses to names does function,
but the reverse is not true (193.158.24.68 is the
address of the name server tested):

root@qthree.uk ~ # nslookup poseidon.ieee.U
com 193.158.24.68
Server: ieee.com
Address: 193.158.24.68

Name: poseidon.ieee.com
Address: 193.158.24.69

root@qthree.uk ~ # nslookup 193.158.24.69
Server: ns.phade.com
Address: 195.35.22.1

** ns.phade.com can’t find 193.158.24.69: NoU
n-existent host/domain

nslookup will be able to help you in most cases.
There is also dnswalk, which searches configura-
tions for common errors such as inconsistent A- and
PTR-data records. Don’t forget to notify changes to
the IP-address of your name server to the compe-
tent authority (Nominet, INTERNIC etc.).

Lame or Missing Delegations are also very com-
mon: In the first case a name server which is higher
up in the hierarchy, when queried, delivers the
address of the server which is supposedly responsi-
ble, but which is in fact completely ignorant of this
good fotune. In the latter, reverse case, the server
simply does not bring back the address of the one
responsible. In order to avoid this it is necessary to
have good co-operation with your ISP. And don’t
forget to check from time to time that your root file
is up to date (in the example in this article this is
root.hint). You can, of course, automate this with
cron (but then make sure that whatever happens,
you don’t mail the log outputs from named). ■

KNOWHOW

70 LINUX MAGAZINE 10 · 2000

BIND

Listing 4: The zone file /var/named/localhost.zone
/var/named/localhost.zone contains the allocation
of the loopback names and addresses

$ORIGIN localhost.
42 ; serial
3H ; refresh
15M ; retry
1W ; expiry
1D) ; minimum

1D IN NS @
1D IN A 127.0.0.1

Listing 5: The zone file /var/named/36.158.193.zone
/var/named/36.158.193.zone contains the allocation
of host names to IP-addresses

36.158.193.in-addr.arpa. IN SOA poseidon.jaguar.com. root.poseidon
(

20000107 ; serial
3H ; refresh
15M ; retry
1W ; expiry
1D) ; TTL

36.158.193.in-addr.arpa. IN NS poseidon.jaguar.com.
IN NS pns.bt.uk.

58.36.158.193.in-addr.arpa. IN PTR poseidon.jaguar.com.
59.36.158.193.in-addr.arpa. IN PTR phoenix.jaguar.com.
60.36.158.193.in-addr.arpa. IN PTR venus.jaguar.com.

Listing 6: The zone file /var/named/0.0.127.zone
/var/named/0.0.127.zone contains the allocation
of local host to the address 127.0.0.1

0.0.127.in-addr.arpa. IN SOA poseidon.jaguar.com. root.poseidon
(

43 ; serial
3H ; refresh
15M ; retry
1W ; expiry
1D) ; minimum

IN NS poseidon.jaguar.com.
1 IN PTR localhost.

