
BEGINNERS FILE CONTROL

Permissions are at the heart of how Linux works.
Some operating systems (such as MS-DOS and some
variants of Microsoft Windows) treat all files in the
same way. This means that any user can change any
file. Usually, there is only one kind of user.

Linux does things in a completely different way.
Under Linux many different users may be using the
system at once (that’s why you need to log in when
your system has booted.) Each user has their own
slice of the system that they can use to store their
files (the path /home/username). When you have
more than one user using the system you need to
ensure that other users cannot modify your files if
you don’t want them to, and that users cannot look
into files that you wish to be private. Examples of
this are the system configuration files in directory
/etc which cannot be viewed by users other than
root. (This is because those files may contain details
that a malicious user could use to attack the system.)

You may be wondering how this is useful if you
are the only person using your system. You may
even be thinking that this is just a time-consuming
irritation. Many new users think this at first. But you
will come to realise that permissions offer many
advantages. An example of this is on my own sys-
tem. I run the latest developer version of KDE, but
sometimes I need to use KDE1.x and GNOME. So

that I don’t have to constantly move files around to
revert to these systems I simply have a different
login for each, and a general directory where all
users can share files. This saves a lot of time over
changing the settings the manual way.

Linux permissions are basically split into two areas.
These are:
• File ownership
• File access permissions
Every file has an owner. This is usually the user who
created the file, although this can be changed.
Users can also be classed into groups, so similar
users can be grouped together.
The other element is the access permissions for the
file. These are split into three areas:
• Who can read (view) the file
• Who can write to the file
• Who can run the file (this only applies to files that

can be run)
Each file has three sets of permissions: permissions
for the owner of the file, permissions for the group
the file is assigned to, and permissions for all other
users on the system.
Let’s look an example. Open a console and do a
directory listing by typing:

ls -al

at the command line. The result on my system can
be seen in Fig 1. This is simply a directory listing, but
lets look at one line as an example:

-rw-r r 1 jono jono 1701 Jul 13 U
15:23 nickmail.txt

A lot of information is given. Reading the informa-
tion from left to right, this is what it means:

- File type indicator (- meanU
s normal file)
rw-r r File permissions
jono Owner
jono Group
1701 File size
Jul 12 15:23 File creation time and date
nickmail.txt Filename

Fig 1: An example directory list

72 LINUX MAGAZINE 10 · 2000

Getting to grips with Linux Permissions

DO IT WITH
PERMISSION

With any operating

system it is important to

ensure that users remain

in control of their files

and directories and are

prevented from

tampering with those

belonging to other

users, or the system.

This is what the Linux

permissions system is all

about, as Jono Bacon

explains.

BEGINNERSFILE CONTROL

The parts we are interested in primarily are the first
four elements; file type indicator, file permissions,
owner and group.

The file type indicator tells us what type of file it is.
Everything in Linux is treated as a file, even things
such as devices (just do an ls -al in /dev to see what
I mean). With everything being treated as a file, it is
handy to have something to say whether it is a nor-
mal file, a directory, a device or whatever. Below are
some examples of different uses:

drwxr-xr-x 4 jono jono 1024 Jul 2U
7 00:36 .kde

This line shows that .kde is a directory as the file
type indicator is set to ‘d’.

brw———- 1 jono floppy 2, 0 May 5 U
1998 fd0

This line shows that fd0 (the floppy drive) is a block
device by the ‘b’ in the file type indicator.
Now look at the permissions part that is next to the file
type indicator for nickmail.txt. This reads as:rw-r–r–.
The permissions part is split into three sections, each
having three characters. Each section reflects a type
of user on the system, and whether they can read
(r), write (w) or execute (x) the file. On this file each
section breaks down as:

rw- The owners section. The owner can (r)ead and
(w)rite to the file. The owner (see below) can-
not execute the file, but this can be changed as
the owner can (w)rite to the file.

r— The group section. The group (see below) can
just (r)ead the file but cannot write to it.

r— The ‘all other users on the system’ section. All
other users who are not in the same group and
do not own the file cannot write or execute it.

To find out who the owner of the the group the file
belongs to, we need to look at the next two pieces of
information in the file’s listing. For nickmail.txt we can

see that the owner is ‘jono’ and the group is ‘jono’.
Now we know what the different bits of a file listing
mean and how we stop certain users using or
accessing files. How do we change the permissions?

Changing a files
permissions in KDE

To change permissions using KDE is very simple.
1. Start the KDE file manager (kfm for KDE1.x and

Konqueror for KDE2.x).
2. Right-click the file whose permissions you would

like to change.
3. Select Properties from the menu. Click on the Per-

missions tab (Fig 2).
4. To change the file’s permissions, click the relevant

check boxes to select the Owner, Group and Oth-
er permissions that you need.

Bear in mind that to change permissions on a file
you need to have permission! You must have write
access to the file. You will notice that there are three
additional boxes you can select; Set UID, Set GID
and Sticky. These are explained in the box »Special
Permissions.«

Changing a file’s
permissions in GNOME

Changing permissions in GNOME is virtually the
same as in KDE.
1. Start the GNOME file manager (gmc).
2. Right-click the file whose permissions you wish to

change. Select Properties from the menu. Click the
Permissions tab.

3. A box like Fig. 3 will appear. As you can see it looks
very similar to the one in KDE, and functions in
exactly the same way.

Changing a file’s permission in
the command line

In Linux, virtually every operation that you can do in
a GUI such as KDE or GNOME can be done using
the command line. Changing permissions is no dif-

10 · 2000 LINUX MAGAZINE 73

[left]
Fig 2: The KDE file
permissions tab

[right]
Fig 3: The GNOME file
permissions tab

BEGINNERS FILE CONTROL

ferent. To change the permissions on a file we use
the chmod command, which has the format:

chmod <permission(s)> <filename(s)>

The chmod command is a very versatile command,
and can change the permissions in a number of
ways. Probably the easiest way to remember is by
changing the permissions using the same letters to
set them as they are displayed (r, w and x). To do this
you must first specify the section that you want to
change (owner (u), group (g) or other (o)). You must
then specify + or - to indicate whether you are
giving (+) permissions or removing (-) them. Sup-
pose that you would like to change the file nick-
mail.txt so that all other users on the system can
read and write to it. You would use:

chmod o+rw nickmail.txt

This command basically says »give every other user
on the system (o) addition permissions (+) that are
read (r) and write (w) on the file nickmail.txt«. Now
let’s assume we had a change of heart and wanted
to let any other user read the file, but not write to it.
To take away write access we would use:

chmod o-w nickmail.txt

Here are some more examples of changing permis-
sions:
chmod u+x file.txt Lets the owner execute the

file.
chmod g+wx file.txt Lets the group write and exe-

cute the file.
chmod o-r mydir Stops any other user seeing

what is in the directory mydir
(e.g - when doing an ‘ls -al’).

As we said, permissions are based around who
owns the file and what group the file belongs to
naturally need commands to change the owner of
the file and their group. Those commands are
chown and chgrp. The chown command is very sim-
ple. Let’s assume we want to make Bob the new
owner of the file nickmail:

chown bob nickmail.txt

It’s as simple as that. When you list the file now with
a ‘ls -al’ you’ll see that the owner section of the
information has changed to Bob. Luckily, the chgrp
command is just as easy to use as the chown com-
mand. Suppose we want to change the group of
nickmail.txt to bob as well. We would type:

chgrp bob nickmail.txt

Again, if you look at the file by doing an ‘ls -al’ you
will see that the group section of the information
has changed to Bob. However, this can only be
done by root.

Are permissions useful?

After all this, you may be wondering what all of
this has got to do with anything. Well… quite a

bit actually. The first thing that it is useful for solv-
ing problems. Many problems that you can
encounter on Linux are simply down to the fact
that a particular user does not have permission to
do something. A common example of this is when
mounting disks. Traditionally, only root can mount
a disk (such as a CDROM or floppy) but there are
many cases when a normal user needs to do so as
well.
Another use of permissions is to make shell scripts
executable. This is done by setting the ‘x’ permis-
sions bit. To demonstrate this create a plain text file
(call it diskfree for the sake of example) using your
favourite text editor containing the following text:

echo
echo »Hello...I am now going to list your harU
d disk space:«
echo
df
echo
echo »There we go...all done. :-) »
echo

Once you have created it, set the execute bit by either
changing it in as described above, or by typing:

chmod a+x diskfree

You can now run the file by typing:

./diskfree

As you can see some text is printed and your disk
space is shown.
When you created the file it was simply text,
although the text contained commands understood
by your command shell. By setting the executable
bit the file can be run so that the commands are
executed. This is called a Shell Script. Although the
example was pretty trivial, shell scripts can be used
to do some amazing things.

Conclusion

Permissions are not just an important part of Linux, but
an essential part. A good understanding of how per-
missions work and how to deal with problems with
permissions is important if your system is to work well.
Like many things in Linux, we can always delve
deeper into the subject. For further information on
working with permissions look at the following
resources:
• the chmod, chown, chgrp man pages
• the Linux Documentation Project manuals and

documents http://www.linuxdoc.org/
• IRC Chatrooms (#linuxuk on irc.openprojects.net

or irc.linux.com, #linux on efnet.demon.co.uk)
If I can offer one final piece of advice it is: »Assume
nothing«. Don’t assume that your system is going to
work the ways you think it will, and don’t assume your
security is tight enough for a networked environment.
Permissions are there to protect you both as a user and
a system administrator, and if you are the only user of
one Linux computer you get to wear both hats! ■

Special Permissions

Linux has some special permis-
sion settings. You won’t

often need to use them, but
this is what they are:

Set UID
This setting causes the process
that is executed by the file to

run with as if the file owner
was running it. This can be

useful in cases where you need
root access to do something

(such as using a device). Be
careful when using this setting
as it could infringe some secu-

rity on your system if used
incorrectly.

Set GID
This is similar in many ways to

Set UID except that the
process will execute with the
same group ID as the owner.

Sticky
This unusual bit will save the

image of the program into
the system’s swap memory for

increased performance.

Check the chmod man page
(run man chmod) for more

details on using these special
bits if you ever need to.

■

74 LINUX MAGAZINE 10 · 2000

