
PROGRAMMING GNOME DRUIDS

120 LINUX MAGAZINE 10 · 2000

Figure 1:
The setup Druid of

the mail client Balsa.

GNOMEs are normally thought of as mystical beings. Related

to the leprechaun, they’re small hunchbacked creatures who

live underground and guard their hoards of precious stones!

In the world of Linux there are also small hunchbacked people

around (many of them are programmers!) But GNOME itself

refers to something entirely different: Thorsten Fischer meets

a GUI for X-Windows.

Programming Wizards for GNOME

DRUIDS,
WIZARDS

AND GURUS

Just as Captain Picard might shout for Number One,
his assistant in Star Trek: The Next Generation, so
the computer user also expects to have assistants
usually called wizards. Under Windows, they’re
intended to speed up and simplify tasks such as
altering settings and configurations.

On the first page of the Wizards used under
Windows to install programs, there’s also the big,
bad licence agreement which takes from users all
the freedom that they ought to be able to enjoy
with the software!

Under GNOME, Wizards are called Druids. One
well known program that uses Druids is Balsa,
whose setup dialog box has probably already been
seen by everybody involved in Linux – if not, then
see Fig. 1. The precursor to Druid was GNOMEGu-
ru. The development of Guru has, however, been
suspended in favour of the Druid, owing to the
greater flexibility it allows.

On the following pages we to show how with
the aid of the Druid, assistants can be created for
simple tasks without having to write a full-blown

program. In order to be brief, we will dispense with
an autoconf-compatible source text tree, and also
tackle the problem not in C but in the wonderful
script language Python. This means we can also dis-
cuss the GNOME API of Python at the same time.
The installation of the necessary package GNOME-
Python is covered in a separate box.

Installation of GNOME-Python

The current version of GNOME-Python is 1.0.53 –
the version jump to GNOME 1.2 has not yet been
made, apparently. The sources can be obtained
from a GNOME mirror, for example from
ftp://sunsite.icm.edu.pl/pub/Linux/GNOME/. As
you might expect, the installation runs like this
after unpacking:

frog@verlaine:~/gnome-python-1.0.53 # ./confU
igure –prefix=/opt/gnome
frog@verlaine:~/gnome-python-1.0.53 # make
frog@verlaine:~/gnome-python-1.0.53 # make iU
nstall

Of course, Python itself must already be
installed. However, in a well-configured Linux sys-
tem this should already be the case – Python is con-
tained in nearly every distribution. The same applies
to an already compiled gnome-python.

A letter druid

An friend of mine once said that when writing let-
ters using LaTeX the same letter could be used over
and over again. He simply created and copied files
as required and then inserted different addresses or
other things with a text editor.

This is a prime target for automation. A small
program with a graphical interface which helps in
drawing up letters would save time. It would have
to have all the components needed to do the job,
however, and bring them together quickly. This is
the kind of task GNOME and Python were built for.

The Code

In Listing 1 the code for the executable file gp-letter
can be seen. The access rights for this – and only
this – must be set to execute. That is done, for
example, by:

chmod 744 ./gp-letter

In the first line the code is transferred to the
Python interpreter. In the third, the module gui is
imported, and this will allow us to create our graphi-
cal interface. The entry point into the program is line
9 where the function Main is called which creates a
new instance of the class and starts its gtk main loop.

So far, so good. This is the nice thing about
object-based programming: if an empty definition
of the class GUI already exists then the program is
capable of running. Not that it would actually do

anything useful! Next we have to think about a con-
structor for the GUI class of the program. This can
be seen in Listing 2.

The desired classes are imported at the begin-
ning. There are two ways of importing a module in
Python. One is to import the module with its com-
plete name space, as happens here with GdkImlib.
Thus, the whole content of the module is accessible
but with the restriction that every call of a function
or class method from the module must be prefixed
by GdkImlib. In Listing 2 this is seen in lines 15 and
16, in which the two graphs for the logo and the
watermark are loaded.

The other possibility is to import using the from
call, which only imports the names of the classes
and functions. Here, trouble can occur if a module
defines a name that already exists. However, the
widget names from the modules gnome.ui and gtk
are used very frequently.

PROGRAMMINGGNOME DRUIDS

10 · 2000 LINUX MAGAZINE 121

Listing 2: Constructor of the GUI class
001: from gtk import *
002: from gnome.ui import *
003: import GdkImlib
004:
005: class GUI:
006:
007: def __init__ (self):
008: self.lettertype = "dinletter"
009: self.filename = "./letter.tex"
010:
011: self.app = GNOMEApp ("gp-letter", "gp-letter")
012: self.app.connect ("destroy", self.quit)
013: self.app.connect ("delete_event", self.quit)
014:
015: self.logo = GdkImlib.Image ("logo.jpg")
016: self.wmark = GdkImlib.Image ("wmark.jpg")
017:
018: self.druid = GNOMEDruid ()
019: self.druid.connect ("cancel", self.quit)
020:
021: self.dp_start = self.start_page ()
022: self.dp_letter type = self.letter type_page ()
023: self.dp_sender = self.sender_page ()
024: self.dp_content = self.content_page ()
025: self.dp_finish = self.end_page ()
026:
027: self.druid.add (self.dp_start)
028: self.druid.add (self.dp_letter type)
029: self.druid.add (self.dp_sender)
030: self.druid.add (self.dp_content)
031: self.druid.add (self.dp_finish)
032:
033: self.app.set_contents (self.druid)
034:
035: self.app.show_all ()

Listing 1: gp-letter
001: #!/usr/bin/env python
002:
003: import gui
004:
005: def main ():
006: gp = gui.GUI ()
007: gp.mainloop ()
008:
009: if __name__ == ‘__main__’:
010: main ()

LinuxMagazine/
gnomedruid

Mind the Tab!

The indentation of code blocks in Python must be
carefully noted – the structure of the program is
defined by them. There are no curly brackets or
other symbols to mark the start and end of
blocks. Instead, a block is usually marked by a
colon on the previous line, say in the case of for
loops, or in Listing 2 line 5 in the class definition,
or in line 7 at the beginning of the constructor
function.

The lines 11 to 13 show the typical handling of
gtk widgets in Python. Gtk is indeed written in C;
but owing to its object-oriented approach wrappers
for object orientated (OO) languages can be created
quite simply and above all, as we see, easily used.

The design of the Druid begins at line 18. Here
we define that clicking on the cancel button is to be
followed by the program aborting. For each individ-
ual page of the Druid your own text can be entered,
which will then form the basis for the Druid.

As a Druid alone is not allowed, it must be con-
tained in a gtk window which in this case is provided

by a GNOMEApp. This happens in line 33. The latter
must then also be displayed, which occurs in line 35.

The pages

So far, gp-letter has five pages in its basic form. What-
ever the case, an initial page for the greeting and a
finish page with the close button should be present in
every GNOME Druid program. Both page types are
implemented using their own widgets GNOMEDruid-
PageStart and GNOMEDruidPageFinish. The pages in
between are of the type GNOMEDruidPageStandard.
All three types are derived from the superclass
GNOMEDruidPage, but only the last one of these pos-
sesses a box of the type GtkVBox which can be used
as a container for user-defined contents.

To avoid tedium we won’t go through the
detailed design of each individual page widget. The
method for creating the start and finish pages are
clearly demonstrated in Listing 3 along with the
method for terminating the program and starting
the gtk main loop. The loop is called up in Listing 1
by gp-letter. The method quit shows the basic struc-

PROGRAMMING GNOME DRUIDS

122 LINUX MAGAZINE 10 · 2000

Listing 3: Start and finish page; Program termination; main loop
001: def quit (self, event = None, data = None):
002: mainquit ()
003:
004: def mainloop (self):
005: mainloop ()
006:
007: def start_page (self):
008: page = GNOMEDruidPageStart ("gp letter", "WelU
come to gp letter.\n\nThis will help you to simply aU
nd quickly create the source text \nfor a LaTeX lettU
er.\n\n Simply answer the questions asked by the DruU
id.", self.logo, self.wmark)
009: return page
010:
011: def end_page (self):
012: page = GNOMEDruidPageFinish ("finish gp letteU
r", Thank you for using gp letter.\n Click the ‘FinisU
h’ button to create your LaTeX file.", self.logo, seU
lf.wmark)
013: page.connect ("finish", self.create_letter)
014: return page

Listing 4: A simple GNOMEDruidPageStandard
001: def content_page (self):
002: page = GNOMEDruidPageStandard ("The content of the letter ", self.logo)
003:
004: box = page.vbox
005: box.set_border_width (5)
006: label = GtkLabel ("Please enter into this text box the content of U
your letter.")
007:
008: frame = GtkFrame ("letter text")
009: framebox = GtkHBox ()
010:
011: self.contentfeld = GtkText ()
012: self.contentfeld.set_editable (TRUE)
013:
014: frame.add (framebox)
015: framebox.pack_start (self.contentfeld)
016: box.pack_start (label, FALSE, FALSE, 5)
017: box.pack_start (frame, TRUE, TRUE, 5)
018:
019: page.connect ("next", self.get_content)
020: return page

ture for a gtk callback function in Python. Note the
importance of the two additional parameters
which, as in C, describe the event structure by
which the callback was called, as well as any trans-
ferred data.

A start and a finish page are built up according
to the same pattern and require a description as
well as a logo – to be seen at the top right on a
page – and a “watermark” which is placed on the
left edge of the page. For this example we have tak-
en the symbols from Balsa as they are quite suitable.
On the finish page the finish button is linked to the
function which undertakes the creation of the letter
content.

The fourth page is the one in which the user
inputs the text of the letter and should be blank.
This page is simply constructed. Box is used as a ref-
erence for the GtkVBox of the page. The structure –
the creation of the widgets and packing them in
containers – is similar to the structure of a widget
collection in C, except that the widgets are to be
accessed again later. They are – like the text box in
line 11 – labelled with the prefix Self. Because of
this they become properties of the class in which
they are used and can be re-used later.

The final function, with which line 19 is linked,
fetches the content of the text field and copies it into
a variable which is also a property of the class so that
during letter creation it can be accessed later.

The start

Now all you need to do is run the program. That
occurs quite simply with:

./gp-letter &

The Druid should now run and appear as in Figure 2.
Happy writing!

Non-linear Druids

Druids can be created in the manner described in
which the pages follow each other in sequence. But
sometimes the structure may need to branch. In a

program like gp-letter, for example, it would be nice
if, after the dialog which offers the choice of letter
class, pages are presented which offer alternative
designs although they are still in the same class.

The new pages will still be inserted in the Druid
using the add method (in Listing 2 in the lines 27 to
31). To make this possible GNOMEDruid defines the
following signals:
• next
• back
• cancel
• finish

The first two of these signals can be used for non-
linear control flow in conjunction with the set_page
method of GNOMEDruid. The signal is received and in
the respective callback function we simply insert the
current page. In this way we can skip to and fro in the
linear list of pages in the Druid and the user receives
the impression of a flexible program.

This procedure would produce a program with
considerably more scope. But whatever the case,
the program has several weaknesses: only a few let-
ter classes are supported and, perhaps more impor-
tantly, the design of the finished letter is not very
pretty. And of course the non-linear control flow is
missing because each letter class – and there are a
few of these – really needs its own options which
would more than justify its own page.

However, these things are enhancements for
the future – for after users have got a feel for the
program. We used the program and it turned out to
be considerably more useful than anticipated. Any-
one who is interested in doing so is welcome to
make improvements. However, our requirements at
the start were for a small and quickly created pro-
gram. And we’ve succeeded.

Source code

Of course, no one wants to copy the whole source
code. Therefore, it is present on my homepage ready
for downloading. Suggestions for improvements and
patches for this program which is released under the
GPL are of course very welcome! ■

Figure 2: The individual
pages of our letter wizard
using druid.

PROGRAMMINGGNOME DRUIDS

10 · 2000 LINUX MAGAZINE 123

Info

The GNOME.Project:
www.gnome.org/

Python: www.python.org/

gnome-python sources,
mirror in Poland:
sunsite.icm.edu.pl/pub/Linux/G
NOME/

GNOMEUI API Reference:
developer.gnome.org/doc/API/
libgnomeui/book1.html

The source code for the
example program www.der-
frosch.de/sw/

■

