
Linux is rock solid in terms of workstation and server
functionality. But those of us who simply have to
have the latest red-hot kernel patches and hardware
drivers, or who are simply involved in kernel devel-
opment, will be no stranger to system crashes. And
of course, not even the best system can keep going
if there is a power cut (unless it has a highly expen-
sive UPS system!).

No matter what the circumstances are that force
Linux to its knees, after rebooting the rule is to do a
hard disk check first of all. This inspects all the files
and rarely completes inside ten minutes. Depending
on the size of the file system and number of hard
disks, the procedure may even take several hours.
Worse still, in rare cases a manual intervention may
even be necessary (fsck). Although it is unlikely, the
data SNAFU will have played itself out completely if
the file system can no longer be repaired. At this
point the only thing that will help is to restore a hope-
fully up-to-date backup.

But this makes things sound worse than they
really are. The Extended2-Filesystem has provided
sterling service since 1993 for countless Linux
servers, whose rare unplanned downtimes put the
potential problems into perspective. However, Linux
beginners and pros are longing for a file system

which is completely ready to run after a nasty crash,
without human assistance and within a few seconds.
The magic word for the solution to this problem is
journaling.

Journaling

The “ordinary” ext2-filesystem sets a flag on sign-on
(mount). This flag is only cancelled on an orderly
sign-off (unmount). So after a crash the operating
system can tell whether the disk has been cleanly
unmounted or not: in other words, whether there is
potentially inconsistent data on the disk.

In order to correct this fault all files must be
checked individually, which can be a very tedious pro-
cedure (called Recovery). A solution to the problem is
to record in a journal which files are being processed
at any moment. Then, after a power cut, only the

ON TEST JOURNALING FILESYSTEMS

30 LINUX MAGAZINE 10 · 2000

JFS Comparative Test

ACCOUNTING
FOR THE

HARD DISK
A journaling file system is essential if Linux is to break into

the enterprise market. At the moment there are four highly

promising approaches, all at various stages of development,

from virtually non-existent to ready to go.

Bernard Kuhn delves deeper

Table 1: File systems with journaling at a glance
Name B-Tree 64-Bit clea Development stage Licence
ReiserFS Yes No Ready for everyday use with restrictions GPL
ext3 No No Fully-functioning Alpha test version GPL
jfs (IBM) Yes Yes Alpha test version GPL
xfs (SGI) Yes Yes Beta test version for kernel 2.4-series GPL Fig.. 1: unbalanced (below) vs. full balanced tree (top)

files that were open at the time need be checked. In
modern file systems a transaction-oriented approach
is used, more often than not as long as any procedure
has not been completely executed, the old data from
the previous transaction retains its validity. This is
especially important if for example a write process
has had an unplanned interruption.

Balanced trees

Apart from brief recovery times, modern file sys-
tems are characterised by greater accessibility. This
is achieved by using so-called B-Trees instead of the
usual linear arrangement of data blocks. So, for
example, in the ext2-filesystem directory entries are
made in a linked list (see Fig. 1). If a directory has
e.g. 1,000 entries, then on average some 500

search steps are necessary to find a file, while in an
ideal balanced tree (binary tree) after just ten steps
(ld 1000) the result is brought to light (compare Fig.
1 with four entries). The improvement in perfor-
mance is, however, obtained at the expense of a
considerably more complex (and thus error-prone)
program code. In particular, after each new entry
the tree has to be “re-balanced”, so that all paths
from the root to the most distant leaves remain
roughly the same length. Seen like this, linked lists
are completely degenerate balanced trees.

Practice

So much for dull theory. The complexity of B-Tree
and journaling algorithms have so far made conver-
sion into Linux reality difficult. Apart from the ready-

ON TESTJOURNALING FILESYSTEMS

10 · 2000 LINUX MAGAZINE 31

Fitting an existing ext2-file system with journaling capabilities is,
thanks to the backwards-compatible ext3-filesystem, almost
childsplay for an advanced Linux user. Linux beginners have only
to overcome the hurdle of the kernel compilation and installa-
tion. Obviously it is essential to back up all important files
before carrying out this step, which does have its risks.

1. Firstly, you will need an unmodified kernel and the ext3 patch.

cd /tmp
wget ftp://ftp.uk.kernel.org/pub/linux/kernel/v2.2/linux-2.2U
.13.tar.gz
wget ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/old/ext3-0.U
0.2c.tar.gz

There already exists a ext3-0.0.2f version, but this
one only applies to a prepatched Red**Hat kernel (2.2.16-3).

2. Now the kernel has to be unpacked, patched, configured and
installed. Don’t forget: during kernel configuration in the sec-
tion File systems the option Second extended fs development
code must be activated for ext3. After installing the kernel
you should first ensure by doing a reboot that the system still
starts up as usual.

cd /usr/src
rm linux # delete old link
tar -xzf /tmp/linux-2.2.13.tar.gz
tar -xzf /tmp/ext3-0.0.2c.tar.gz
cd linux
patch -p1 <\<> ../ext3-0.0.2c/linux-2.2.13-ext3.diff
make menuconfig
make clean && make dep && make bzImage
make modules && make modules_install
after /boot over write kernel and instal by LILO

3. Now all non-root-partitions can be converted to the ext3-
filesystem. To do this the user must manually install and ini-
tialise a journal file on the partition. Depending on the activi-
ty the journal should have a capacity of about 10 to 30 MB. For
the initialisation the inode number, which the journal on the
partition represents, is needed. This number can be found
using the command “ls” with the option “-i”. In the following
example /usr is a correctly mounted ext2-formatted partition
(/dev/hda4).

in /etc/fstab for the /usr-input, replace the
file system identifier “ext2” by “ext3”
vi /etc/fstab

prepare /usr unmount (otherwise “busy”)
init 1

install journal (30MB)
dd if=/development/zero of=/usr/journal.dat bs=1k count=30000

determine inode number (here e.g. 666)
ls -i /usr/journal.dat

666 /usr/journal.dat

mount /usr as ext3-fs and initialise journal with
calculated inode number
umount /usr
mount -t ext3 /dev/hda4 /usr -o journal=666

So far, so good. Unfortunately the above method cannot be
used on the root partition, since this cannot be unmounted dur-
ing operation. The chicken-and-egg problem can be solved by
performing the journal initialisation as a kernel boot option. So
to do everything in sequence:
4. As with the above example, the computer has to be informed

in /etc/fstab for future system starts that the root file system
will henceforth be an ext3-filesystem (replace ext2 in the “/”-
entry by ext3).

5. The journal is (as above) installed by hand on the root parti-
tion and the inode number (in this case, 7777) of the journal
must be assigned as a kernel parameter

dd if=/dev/zero of=/journal.dat bs=1k count=30000
ls -i /journal.dat

7777 /journal.dat
reboot

The computer now starts up again. When the LILO prompt
appears a couple of additional kernel options including the
inode number of the journals must be added to the initialisation:

LILO: linux ext3 rw rootflags=journal=7777

The root partition will now be available after a hard reset within
a few seconds recovery time (or at least, it should be). The whole
procedure can also be cancelled by again replacing ext3 in
/etc/fstab by ext2.

Recipe 1: ext3fs-retrofitting

made, free open-source ReiserFS, IBM and SGI are
now rushing to ship their tried-and-tested and
robust implementations JFS and XFS to Linux. But for
anyone who was already satisfied with the ext2-file
system and is only interested in short recovery times,
a closer look at the ext3-fs will be worthwhile.

ext3-fs

The ext3-filesystem is merely an expansion of the
well-known ext2-filesystem with journaling func-
tionality and has no performance-boosting bal-
anced trees. This means that existing Linux installa-
tions can continue to be used immediately on an
ext2 base without reinstallation or time- and space-
wasting copying actions, since ext3 is built on the
basis of the existing structures [1]. On top of this,
for advanced Linux users, installation and getting
started are not especially complicated (see method
1). However, ext3fs is, according to the chief devel-
oper Stephen Tweedie, only in the alpha test phase
and a long way from being suitable for everyday
use. Nevertheless, there is a lot of positive feedback
being gathered in news groups and other Internet
forums. Also, a short test in our hardware lab did
not find any weaknesses. But at the same time you
must not forget that alpha test versions in Linux
would be regarded by the ‘marketing’ department
as the equivalent of Version 1.0 in many other oper-
ating systems.

ReiserFS

What began as a private study by the file system
specialist Hans Reiser has now developed into a
powerful file system which is suitable for everyday
use [2]. Tests and experiments are however not yet
completed and research is continuing into possible
improvements - now at the request of SuSE GmbH.

The ReiserFS arranges files and directory entries
into balanced trees. Small files or remnants of files

(tail ends), directory entries and references to nor-
mal 4K file blocks (Unformatted Nodes) are all
accommodated in 4K blocks (Formatted Nodes) in
order to make best use of the available disk space
(cf. Figure 2). A beneficial side effect of this arrange-
ment is that you get more data in the buffer cache
and therefore fewer disk accesses are necessary.
With ReiserFS a watch is kept at all times to ensure
that the data is kept close to its references and
directory entries so that large movements of the
write/read heads are avoided.

All these refinements have meant that the
source code has grown five-fold compared with the
ext2 file system. Nevertheless (or even because of
this) there are currently still some restrictions
imposed on ReiserFS: only 4k blocks are allowed
and the use of SoftRAID is completely prohibited.
Hardware platforms other than the x86 are also
unsupported.

Unfortunately it is considerably more complicat-
ed to start up ReiserFS than it is with ext3 (see
Recipe 2). As an alternative to time-consuming
manual installation you may install Mandrake Linux
7.1 or SuSE Linux 6.4: both distributions offer Reis-
erFS as an alternative filesystem even on the level of
the graphical installer.

After intensive tests by SuSE, some kernel devel-
opers consider ReiserFS is still not ready for mission
critical use. In day-to-day work this file system has,
however, already proven itself ideal for more than
six months on the workstations of the author of this
article. Daily backup of all important data on an NFS
server (with tried and trusted ext2fs and a tape dri-
ve) is nevertheless vital in case of a full crash.

XFS

More than a year ago, SGI announced their “jewel in
the crown” to be made available under GPL condi-
tions for Linux. Unlike the other numerous and suc-
cessful Open Source Projects from SGI, the XFS has
got off to a sluggish start - the reasons for this being,
among other things, that it just wasn’t “open” for a
while. SGI’s programmers were in the process of
removing foreign intellectual property from the
source code and replaced it with their own re-imple-
mentations. First impression of the alpha test version
proved that these radical measures didn’t take down
the robustness of the code with it. Currently, XFS for
Linux is in Beta test stage and according to SGI, a
production stable version for the kernel 2.4 series
will be available soon [3].

JFS

IBM’s Journaling File System for Linux was
announced, surprisingly, at this year’s Linux World
Expo in New York. The currently available version
(0.0.9) however is still at a very early stage of devel-
opment. The robust, tried and tested source code
for this is available as drop in replacement for the

Fig. 2: The structure of
the ReiserFS (simplified)

in UML notation

ON TEST JOURNALING FILESYSTEMS

32 LINUX MAGAZINE 10 · 2000

Info

[1] Ext3-Download:
ftp://ftp.uk.linux.org/pub/lin-

ux/sct/fs/jfs

[2] ReiserFS-Homepage:
http://devlinux.com/projects/re

iserfs

[3] XFS-Homepage:
http://oss.sgi.com/projects/xfs

[4] JFS-Homepage:
http://oss.software.ibm.com/de
veloperworks/opensource/jfs/i

ndex.html

■

kernel source tree. Unfortunately the roughly 1.3
Megabyte tgz package [4] contains only sparse doc-
umentation. Nevertheless a glance at the source
code reveals that the JFS also makes intensive use of
balanced trees and appears to be 64bit-clean.

Conclusion

Four highly promising approaches for journalling
raise great hopes that Linux will shortly be ascend-
ing into higher spheres. This feature is important,
not only for enterprise servers, but also for the
embedded Linux market, which is growing like wild-
fire. (In this application it is quite common for com-

puters to be switched off without shutting down.)
With XFS and JFS, two projects which have arisen
out of commercial products have entered the race.
Their existing and robust code is currently being
brought up to scratch for Linux by the developers.
But the easily-installed ext3 and in particular the
ReiserFS are already there. The latter can even be
choosen as alternative to ext2 within the graphical
installers of the latest SuSE and Mandrake distribu-
tions (SuSE encourages their customers to do so).
Although there are rumours that tell that ReiserFS
isn’t production stable, at least the author spent six
month of daily work on ReiserFS-enhanced work-
stations – without any data loss! ■

ON TESTJOURNALING FILESYSTEMS

10 · 2000 LINUX MAGAZINE 33

Anyone wanting to convert their computer to ReiserFS has at
present got their work cut out. Just as in the case of the ext3
retrofit, this procedure is not without hazards. However, since
the existing system has to be copied across in the course of the
retrofit, there is no need for a backup - provided no errors are
made during repartitioning and there is a suitable boot diskette
available in the case of a reconfigured LILO.

As part of the preparation a free partition is required, which
has to be big enough to be able to accommodate the existing
Linux installation (obviously the system can still consist of several
partitions). In addition you will need an approx. 30 MB /boot
partition (with ext2 file system), since LILO will not work with a
kernel on a ReiserFS. /boot is mounted as read-only in normal
operation, so that after an abrupt interruption to operations
there is no need for fsck. But now, step by step:

1. First the kernel sources and the patch for the journaling Reis-
erFS are needed. Warning: there is also a ReiserFS without
journaling!

cd /tmp
wget ftp://ftp.uk.kernel.org/pub/linux/kernel/v2.2/linux-2.2U
.16.tar.gz
wget http://devlinux.com/pub/namesys/linux-2.2.16-reiserfs-3U
.5.24-patch.gz

Unpack, patch, configure and install the kernel (Warning: Don’t
forget the option Filesystems/ReiserFS in configuration)

cd /usr/src
rm linux # delete old link
tar -xzf /tmp/linux-2.2.16.tar.gz
cd linux
gzip -cd /tmp/linux-2.2.16-reiserfs-3.5.24-patch.gz | patch -p1
make menuconfig
make clean && make dep && make bzImage
make modules && make modules_install
copy kernel over after /boot and install via LILO

3. After rebooting the tools (especially mkreiserfs) can now be
prepared:

cd /usr/src/linux/fs/reiserfs/utils
make
cp bin/reiserfs /sbin

4. Setting up the new file systems and copying across data: in the
following example /dev/hda2 is the current root partition (inc.

/boot), /dev/hda6 is the future (journalled) root partition and
/dev/hda5 the future /boot partition (ext2, r/o). The virgin
journaling ReiserFS requires, after formatting, as much as 30
MB for the journal.

Set system to “back-up” mode
init 1

back up root partition
mkdir /tmp/newroot
mkreiserfs /dev/hda6
mount /dev/hda6 /tmp/newroot
(cd && tar cplf - . —exclude boot) | (cd /tmp/newroot && tar xU
pf -)

copy over /boot
mkdir /tmp/newboot
mke2fs /deb/hda5
mount /dev/hda5 /tmp/newboot
(cd /boot && tar cpf - .) | (cd /tmp/newboot && tar xpf -)

5. Adapt fstab. Instead of ext2 for root, reiserfs must be substi-
tuted. Also, the root partition has now moved (hda2 after
hda5). And don’t forget the entry for the new /boot partition.
So: instead of the old /etc/fstab entry for the above example

/dev/hda2 / ext2 defaults 1 1

the relevant part of the new /tmp/newroot/etc/fstab must look
something like this:

/dev/hda5 / reiserfs defaults 1 1
/dev/hda6 /boot ext2 ro 0 0

6. The best way to check whether this comprehensive move has
worked, risk-free, is with a boot diskette. This means the deli-
cate Master Boot Record will be unaffected for now:

Create boot diskette
dd if=/usr/src/linux/arch/i386/boot/bzImage of=/dev/fd0
rdev /dev/fd0 /dev/hda6 # define new root partition
sync && reboot

Once the computer (hopefully) has booted up in the copied sys-
tem, all that remains is to modify /etc/lilo.conf for the new envi-
ronment. Before calling up LILO, however, the /boot partition
has to be mounted writeable, since otherwise “lilo” will

mount -o remount,rw /boot

Method 2: ReiserFS conversion

