
BEGINNERS SOFTWARE INSTALLATION

98 LINUX MAGAZINE 10 · 2000

Package installation made easy

UNWRAPPING
THE PACKAGE
Unlike their Windows

counterparts, Linux

programs rarely come

complete with a setup

program that checks

your disk for free

space, creates an

installation folder and

sets up icons for you to

run the program. Under

Linux this must all be

done manually. But

don’t panic: Hans Georg

Esser show you it’s not

as hard as it sounds.

Binary: Binary files, often just
called »binaries«, are programs
that have been comoiled into a

form that can only be under-
stood by the computer. They

are kept in directories such as
/bin, /usr/bin and so on.

Source: Source files are the
original text files containing

the program statements (in a
language such as C or C++) that

the programmers wrote. You
can read them, though unless
you’re a programmer too you
might not understand them!

■

There are many different types of software archive
in the Linux environment. Before we look at how to
install them, let’s find out a bit more about them.

rpm packages

If you’re already running Linux you’ll no doubt have
already found many files with names ending in .rpm.
this stands for Red Hat Package Manager and identi-
fies archives which have been compiled according to
a standard introduced by Red Hat. Nowadays this for-
mat is used by almost all distributions.

But there’s an important difference between
binary RPMs and source RPMs. Binary RPM pack-
ages contain the executable files as well as configu-
ration and miscellaneous other files that go togeth-
er to form the application. In addition to this, a
binary RPM archive holds information on what to do
immediately before and after the installation. It also
works out if any other packages are required for the
installation and if so, if any file conflicts might occur.

Source RPMs contain the program source code
(the text written by the programmer, usually in C or
C++), together with instructions showing how to
compile this code into something useful. From a
source RPM you can produce a binary RPM pack-
age. More on this later.

In most cases, RPM packages can be installed
either by typing a command into a terminal window
or by using a graphical tool under KDE or Gnome. In
order to do this, system administrator (root) rights are
required. So before starting you must login as user
root or use the su command. Owing to differences in
individual Linux distributions it’s often the case that a
particular RPM package can only be installed on the
distribution for which it was created. Therefore, when
searching for files on the Internet you’ll frequently find
different RPM packages for different distributions.

The filename lets you recognise the version of
the program and the platform for which it was cre-
ated. A typical example might be:

kpackage 1.3.10 3.i386.rpm

The version number here is 1.3.10. The number
3 after this means that the package has been creat-
ed three times, implying there are packages num-

bered 1.3.10-1 and 1.3.10-2 also around which per-
haps were made during an earlier version of the dis-
tribution. »i386« indicates that the program will run
on all Intel based systems (all computers with
80386, 80486, Pentium I/Pro/II/III or compatible
processor, including AMD and Cyrix etc.).

If you find several versions of a program you’re
interested in but each has a different ending like
i386.rpm, i486.rpm or i586.rpm, select the one that
best suits your computer. Packages which were
compiled for Pentium (586) processors are better
optimised than 386 packages since they use addi-
tional commands which the 80386 lacks.

Source RPM packages have the abbreviation
»src« in the name instead of the platform designa-
tion - the source package for the above RPM pack-
age might therefore be called:

kpackage 1.3.10.src.rpm

Source RPM packages don’t need a platform indica-
tion because under Linux the source code is – in
general – not specific to a hardware platform. It is
the process of compiling to a binary file, translating
the source code into machine language, which
makes a program platform-specific.

deb packages

In addition to RPM there is another popular package
format: the Debian format. Debian packages end in
.deb and are used by the new Corel Linux distribution
as well as Debian’s own distribution. Owing to the
relatively limited use of Debian – because Debian is
one of the less user friendly distributions – we will dis-
pense with a detailed description. It is worth noting
that Debian and RPM packages can be converted in
one another with the aid of the program alien,
though this has a variable success rate. If possible you
should choose a package type that suits your system.

tar.gz archives

Files that end in .tar.gz are broadly equivalent to zip
archives under Windows. But while zip archives fre-
quently compress the contents of a whole folder
and subfolders in one go, this is a two step proce-

BEGINNERSSOFTWARE INSTALLATION

10 · 2000

dure with Linux. First, a tar archive is created which
contains the folder hierarchy. The files are not com-
pressed until the second step is instigated, in which
the program gzip is used to pack the tar archive.
This two stage process explains the double file
extension (ie package.tar.gz.)

Program packages in tar.gz format usually con-
tain the program source. For installation to take
place they must be unpacked, configured, compiled
(turned into a binary program) and finally copied to
the correct place in the Linux folder hierarchy. We’ll
describe in more detail how this happens later on.
Occasionally you will find tar.gz packages which con-
tain compiled program files but it’s pretty unusual.

tar.bz2 archives

These are a variant of tar.gz archives. After tar has
run the compression program bzip2 is used which
achieves a higher compression rate than the older
gzip program. However, the archive doesn’t differ sig-
nificantly from the tar.gz archive apart from the fact
that a different command is necessary to unpack it.

Now that the overview is complete we can dis-
cuss the installation procedures. We’ll start with the
simplest variant: the installation of RPM archives.

Installing RPMs

Once you’ve found a binary RPM package that suits
your Linux distribution you can install it via the console
using the rpm command or via a graphic front-end
like kpackage under KDE or gnorpm under GNOME.
Some distributions supply further tools which fulfil the
same purpose, such as SuSE’s YaST, easyLinux’s ePro-
file or Mandrake’s rpmdrake. If your distribution has
its own installer it is better to use it as it may provide
extra benefits like automatic menu configuration.

kpackage

In order to install packages you must have adminis-
trator rights. Open a console window and type the

command su. You will be asked for the password for
the administrator root. Once this is completed you
can start the package manager by typing kpackage.
Some distributions allow you to call up kpackage
using the K menu without becoming root before-
hand. When the program starts a window opens
into which you must type the root password (Fig. 1).

When it starts, kpackage first reads the informa-
tion in the RPM database which tells it about the
program packages that are already installed. It then
displays this in a tree view (Fig.2.) Each package
you’ve installed should be present in this hierarchy –
for example, you would find the editor emacs under
RPM/Applications/Editors.

In order to install a new package select the menu
item File, Open. The usual Open dialog should
appear and you will be able to select the package
you want to install. kpackage will now display infor-
mation on the package in the right half of the
screen. Under the Properties tab you will find a brief
description which amongst other things displays the
name and version (Fig 3). Clicking on the tab File List
should give you a listing of all the files which will be
created during installation. You can find out from
this what folders the files will be put in.

On the left you will find five check boxes: Upgrade,
Replace Files, Replace Packages, Check Dependencies
and Test. These have the following meanings:
• Upgrade: If you want to install a program that

already exists on your system in an older version
you must check this box to carry out an update.
The older version is automatically uninstalled. If
Upgrade is not checked and an older version is
present, the installation will halt with an error.

• Replace Files: rpm keeps an eye open for files
that already exist being overwritten by the instal-
lation. If so it halts with an error. This can happen
when two packages place the same configuration
file in the folder /etc, for example. If you mark this
field, a package is installed even if it means over-
writing files that already exist.

• Replace Packages: This option is similar to Upgrade:
a package is installed when it is already present in

10 · 2000 LINUX MAGAZINE 99

[below left]
Fig. 2: In the tree view you
will find all the RPM packages
already installed.
[below]
Fig. 3: Package properties
using kpackage

Fig. 1: When starting kpackage as a
normal user you are prompted for
the root password.

BEGINNERS SOFTWARE INSTALLATION

100 LINUX MAGAZINE 10 · 2000

another version but the old package is preserved.
This might be useful if perhaps you want to install
two versions of a particular library file.

• Check Dependences: As already mentioned,
RPM packages “know” which extra packages are
required by the one you are installing. An exam-
ple of this is the KDE base package kdebase
whose programs can only run if qt and kdelibs are
also installed. If a required package is missing you
will receive an error message. If you know for
sure that all necessary files are present, you can
uncheck this option. You might do this if for
example you want to install a package designed
for a foreign Linux distribution and you know that
the required package has a different name and is
not being found despite being present.

• Test: This is simple enough: it checks whether the
package can be installed without difficulty. Plac-
ing an check in this field means that despite
going through the motions, no files will actually
be installed.

After making any changes to these settings click on
Install to install the selected package. Cancel will
return you to the tree view.

Instead of selecting a package using File, Open
you can also drag it from a kfm window to the
kpackage window. If kpackage is not yet open you
can start kpackage from kfm by clicking on the rpm
archive. This needs you to be user root, however.
There is a way to call up kpackage with the neces-
sary rights from the kfm window: select the menu
option System, KFM file manager (Super User
Mode). After entering the password a kfm window
is opened in which you have administrator rights:
you can tell because of the red mark at the top left
of the kfm window. If you click on an rpm archive in
this window, kpackage is started without a pass-
word needing to be entered.

gnorpm

Gnome has a similar program: gnorpm. This is
superior to Red Hat’s own tool glint and has the
benefit of being available in all Linux distributions.

In principle, the same thing is done here as with
kpackage. Start the program as the administrator
root (type »su« and enter the administrator pass-
word). You’ll also have to open a gmc (GNOME
Midnight Commander) file manager window and
drag the RPM package from it to the gnorpm win-
dow. This should open a new window, Install, in
which the package is displayed (Fig 6). By clicking
on Queries you can obtain more detailed informa-
tion (the current gnorpm version 0.9, however,
always crashed when we tried it.) A click on Install
starts the whole thing running.

gnorpm also checks for package conflicts, and,
if applicable, pops up a warning dialog box in which
you can alter the installation settings.

Installing RPMs by hand

In addition to using a graphical front end which sim-
ply calls the rpm routine, it is also possible to manu-
ally use rpm within a console. If you are not afraid
of a hands-on approach then you will find this
method more efficient.

All you need before starting is the precise file-
name of the RPM, including its path (if the archive is
not in the current folder.) You must then become
the administrator root using su. Once you have
done this, enter the command:

rpm Uvh path/package 1.2.3 1.i386.rpm

It’s as simple as that! During installation a progress
meter is displayed showing how much of the work
is completed. rpm can work on several packages at
the same time, using a command like:

rpm Uvh download/*.rpm

You can find out which version of a package is
installed by typing rpm -Uvh q package name (see
Fig. 7). You will find a list of the options that can be
used in Table 1.

When using the options -q and -e for querying
or erasing, only the package name (without the ver-
sion number) needs to be indicated, i.e. not rpm -e
package 1.2.3.rpm but simply rpm -e package.

[top left]
Fig. 4: A red mark at top left
means that this window has

administrator rights

[top right]
Fig. 5: gnorpm first displays

all installed files

Fig. 7: Package installation and
querying using a terminal window

Fig. 6: Clicking on Install starts the
whole thing going

BEGINNERSSOFTWARE INSTALLATION

10 · 2000 LINUX MAGAZINE 101

Compiling source files

Now we come to a more complicated way to install soft-
ware – from the programmer’s source files. Here the
program exists in its basic form as a source code archive.
Before anything else happens it must be unpacked to a
suitable place: /usr/local/src/ is usually the default. In
order to do this you must become administrator root.
You can then unpack the program archive. Archives
which end in .tar.gz or .tgz are unpacked using:

tar xzf path/package.tar.gz

and packages which end in .tar.bz2 are unpacked using

tar xIf path/package.tar.bz2

(Note: between »x« and »f« in the command above
is a capital »i«.) This command creates a new subdi-
rectory with the name of the source code files. You
must now change to this directory. There then fol-
lows what some call the classical installation triple
step: »configure/make/make install«:

[root@dual myprog 1.1.0]# ./configure
...
[root@dual myprog 1.1.0]# make
...
[root@dual myprog 1.1.0]# make install

All three commands will cause your screen to be filled
with many system messages. What do they all mean?

Well, the first step ./configure (which must be
typed with a dot and slash before the word »config-
ure«) starts a shell script in the current folder. This
script has been created by the programmer and
looks around your Linux system. It checks what
operating system and what version you are using
(frequently the same source text archive can be used
on other Unix variants), which compiler is installed

(under Linux it’s usually GNU C), and whether all the
necessary program libraries exist in sufficiently up-
to-date versions. If everything appears satisfactory
the script produces a makefile (Fig. 8).

You need the makefile for the next two steps.
When you run the program make (which must also
be on your hard disk, of course), it processes the
freshly created makefile which itself contains a
recipe-like listing of what must happen – and in
what sequence – in order to create a finished pro-
gram. ./configure and make can take quite a long
time to run depending on the size of the program.

Finally, by typing make install, all created files will be
copied to the correct places on your system. Programs
themselves usually end up in /usr/bin or /usr/local/bin,
help pages (man pages) in /usr/man or /usr/local/man,
configuration files in /etc and so on.

Once this is all done, the installation is finished.
Try running the newly-installed program. If it works
properly you can delete the folder from which you
carried out the compilation.

If after unpacking a source code package you
find there is no configure file, examine the other
files in the folder. Usually, you will find a COMPILE
or README file in which the procedure for installing
the program is described. ■

Table 1: rpm options
i Install (no update)
U Update
v »verbose« (i.e. detailed) — displays package name
H displays progress meter
q »query«; enquires whether a package is installed
e »erase«: deletes a package
nodeps ignore dependencies (i.e. install even if necessary packages are missing)
force force installation in the case of conflicts

Fig. 8: ./configure : the first step
to a finished program

