
GNOME is a graphical user environment for Unix
systems. Its GNU General Public License status
means that it is absolutely free. Perhaps its best
attribute is its standard look and feel which creates
a consistent appearance and behaviour (in the case
of errors for example.) Furthermore, GNOME pro-
grams are intended to interact with one another
easily. To edit an HTML file for instance, all you need
do is drag and drop the file from the file manager to
the editor. This is a familiar feature of Microsoft
Windows.

The uniform appearance of applications may
seem boring but it is one of the main reasons an
operating system like Windows has become so
widely accepted. GNOME's attempt to bring the
advantages of standardisation to a free operating
system should therefore be supported. The best
way to do this is to create your own applications for
GNOME. Here we show you the basic procedures.

Where to begin?

You won't have to download any major files from
the Internet to begin programming. Development
can begin with the GNOME version shipped with

PROGRAMMING YOUR FIRST GNOME PROGRAM

GNOME programming

TAMING
THE

GNOME
THORSTEN FISCHER

The GNU Network Model Environment (GNOME)

is supported by a range of programs.

But what could be better than writing

your own? In this article we'll

show you how.

your current distribution. They all come with a com-
plete GNOME including the developer files. Howev-
er, if you really can't resist, you'll find newer pack-
ages in various formats on the GNOME website (list-
ed below.)

Anyone with a distribution based on the pack-
age manager rpm can easily install the downloaded
packages (don't forget to uninstall the old packages
first!) Install them using the command:

rpm -U <packagename.rpm>

Normally, that should be it. Anyone who intends to
compile larger projects should prepare themselves
for a time-consuming orgy of downloading and
compiling that will not be hassle-free. You'll get the
software from the sites below, or from mirror
servers.

If you want an installation that just contains the
basics you'll be perfectly happy with glib, gtk+,
imlib, ORBit, gnome-libs, libgtop and the gnome-
core packages. Installation is described in the
README files of the source package. It generally
consists of the well-known commands:

../configure
make
make install

Making a start
The unimaginative but customary "Hello World"
program is a standard first program. Linux program-
mers have already covered this ground, so we'll
write a small program that produces just one win-
dow. We'll then take this solitary, single window as
a cry from GNOME, a call into the big wide world.
This approach saves us creating an output function.

Listing 1 shows the simplest (and, as we have
seen, the most philosophical) program for GNOME
(mini.c):

Listing 1: mini.c
#include <gnome.h>

int main (int argc, gchar *argv[]) {

GtkWidget *my_application;

gnome_init ("gnomovision", "0.0.1", argc,U
argv);
my_application = gnome_app_new ("gnomovisU

ion", " gnomovision ");

gtk_widget_show (my_application);

gtk_main ();

return (0);

} /* end of mini.c */

As you can see, it is no longer necessary to call up
gtk_init or add gtk.h, as with gtk+. GNOME encap-
sulates almost all the necessary calls for gtk. Howev-

er, gtk_main still has to be called up to start the
"main loop" of the program.

The small program is compiled using the follow-
ing compiler call:

gcc mini.c ̀ gnome-config --libs --cflags gnoU
meui` -o mini

The finished program is, in the best gtk+ style, a
200x200 pixel window without any content whose
only purpose is to be closed with the relevant but-
ton on the window.

What happens in these few lines? Firstly, the
application itself is declared as a GtkWidget. Then
gnome_init initialises the program and reports it to
GNOME. This feature is required for session man-
agement, which ensures that after the next restart,
all the programs that are open when you log off are
available again in the same place on the desktop.

The two character strings represent the name
and the version number of the program. argc and
argv are, as usual, the arguments which are trans-
ferred from the command line to the program when
the program is started. These can be edited with
popt, the library GNOME uses as standard. The call
for gnome_app_new creates the widget, i.e. the
application itself, by carrying out various initialisa-
tions and providing memory. Again the program
name and the title are transferred as they are to
appear in the header line of the window. The func-
tion gtk_widget_show () shows the window on the
screen. The program then goes into the main loop
and waits for events.

The strange way in which the compiler is called
isn't new to established gtk+ programmers. The
small utility gnome-config forwards the necessary
include parameters (e.g. "-I/opt/gnome/include" or
"-L/opt/gnome/lib") to the compiler. This saves the
user some typing and is particularly useful if you
wish to convert your program to a simple configura-
tion and installation with GNU autoconf. It is now
time to close the window again.

PROGRAMMINGYOUR FIRST GNOME PROGRAM

2 · 2000 LINUX MAGAZINE 83

PROGRAMMING YOUR FIRST GNOME PROGRAM

84 LINUX MAGAZINE 2 · 2000

/*
* Example program for the gtk+ library from the
* article for Linux Magazine
*
* (c) 2000 Thorsten Fischer
*
* first.c, compile with
* gcc first.c ̀ gnome-config --libs --cflags gnomeui` -o first
*
*/

#include <gnome.h>

gint create_about_box (void) {
GtkWidget *aboutdialog;
gchar *authors [] = {
"Thorsten Fischer <frosch@cs.tu-berlin.de>",
"Your name <your name@your provider >",
NULL };

gchar *abouttext =
"gnomovision: The definitive program for GNOME!\n
This program is subject to the GPL. It may be used andU
passed on
without any restrictions as long as this copyright noticeU
remains in place.
You can find further information in the file COPYING.";

aboutdialog = gnome_about_new ("gnomovision", "0.0.2",
"(c) 1999 Free Software Foundation", (gpointer) authors,

abouttext,
"./image.png");

gtk_widget_show (aboutdialog);
return;

}

gint end_program (GtkWidget *widget, gpointer data) {
gtk_main_quit ();
return;

}

static GnomeUIInfo menu_file [] = {
GNOMEUIINFO_ITEM_STOCK ("Exit", "exit gnomovision",
end_program, GNOME_STOCK_MENU_EXIT),
GNOMEUIINFO_SEPARATOR,
GNOMEUIINFO_END

};

static GnomeUIInfo menu_help [] = {
GNOMEUIINFO_ITEM_STOCK ("About gnomovision", "About gnomoviU

sion",
create_about_box, GNOME_STOCK_MENU_ABOUT),
GNOMEUIINFO_END

};

static GnomeUIInfo menu_main [] = {
GNOMEUIINFO_SUBTREE (N_("File"), menu_file),
GNOMEUIINFO_SUBTREE (N_("Help"), menu_help),
GNOMEUIINFO_END

};

static GnomeUIInfo menu_toolbar [] = {
GNOMEUIINFO_ITEM_STOCK ("Exit", "exit gnomovision",
end_program, GNOME_STOCK_PIXMAP_EXIT),
GNOMEUIINFO_SEPARATOR,
GNOMEUIINFO_ITEM_STOCK ("About", "About gnomovision",
create_about_box, GNOME_STOCK_PIXMAP_ABOUT),
GNOMEUIINFO_END

};

gint show_popup (GtkWidget *widget, GdkEvent *event) {
GtkWidget *popup;
popup = gnome_popup_menu_new (menu_help);
gnome_popup_menu_do_popup_modal (popup, NULL, NULL, NULL, eU

vent);
gtk_widget_destroy (popup);

}

int main (int argc, gchar *argv[]) {
GtkWidget *my_application;
GtkWidget *abox;
GtkWidget *abutton;
gchar buf [40] = "Left click for popup menu!";

gnome_init ("gnomovision", "0.0.2", argc, argv);

my_application = gnome_app_new ("gnomovision", " gnomovisioU
n ");
gtk_widget_set_usize (GTK_WIDGET (my_application), 200, 100U

);
gtk_signal_connect (GTK_OBJECT (my_application), "delete_evU

ent",
GTK_SIGNAL_FUNC (end_program), NULL);

abox = gtk_hbox_new (FALSE, 0);
gnome_app_set_contents (GNOME_APP (my_application), abox);

abutton = gtk_button_new_with_label (buf);
gtk_box_pack_start (GTK_BOX (abox), abutton, TRUE, TRUE, 0);
gtk_signal_connect (GTK_OBJECT (abutton), "clicked", GTK_SIU

gNAL_FUNC
(show_popup), NULL);

gnome_app_create_menus (GNOME_APP (my_application), menu_maU
in);
gnome_app_create_toolbar (GNOME_APP (my_application), menu_U

toolbar);

gtk_widget_show (abutton);
gtk_widget_show (my_application);

gtk_main ();

return;

} /* end of first.c */

Listing 2: first.c

What's going on here?

Anyone who, after closing mini, views the list of current
processes with ps will see that the small program still seems to
be hanging around in memory. This is unsurprising, as we only
closed the window with the help of the window manager. To
exit the program we need to call up the exit program function
specifically.

In order to bring about events, GNOME (once again, and
not for the last time!) uses gtk+. This toolkit uses what are
known as callbacks to call up functions at the events defined
by the programmer. The individual widgets which make up a
window are linked with the functions to be called based on
certain conditions via the function:

gtk_signal_connect ();

This function ensures that the loop gtk_main responds to the
events. If our window has a widget such as an exit button by
the name of exitbutton, the program could contain the fol-
lowing line based on its definition:

gtk_signal_connect (GTK_OBJECT (exitbutton)U
, "clicked",
GTK_SIGNAL_FUNC
(gtk_main_quit), NULL);

Now each time the user clicks on the exit button the pro-
gram's main loop is interrupted, allowing the user to exit the
program. It makes sense when these events occur to call up a
function you have written yourself showing a dialog box that
offers to save changed and still open files. The last parameter,
NULL, can be filled with any pointer which can transfer data
to the function.

Each widget can respond to standard events (is clicked on,
is closed etc.) Most widgets also have their own specific
events, which the user can take advantage of. The widget
GtkListItem, which describes the individual entries in a list,
responds to the selection of individual entries in the list – a
property which would serve no purpose for a simple button.

Navigation

Naturally, a graphical user interface program cannot manage
without a menu. In most cases, a toolbar with icons which
provide shortcuts to the most frequently used functions is also
desirable. GNOME has a simple system for creating menus.
This system restricts the programmer's actions to defining the
names of menu entries and icons and their functions.

The structure in which the menu entries are defined is
called GnomeUIInfo. The following call creates a main menu
containing a file and help menu:

GnomeUIInfo menu_main [] = {
GNOMEUIINFO_SUBTREE (N_("File"), menu_file),
GNOMEUIINFO_SUBTREE (N_("Help"), menu_help),
GNOMEUIINFO_END

};

Based on the same model, the two structures menu_file and
menu_help are defined and displayed using the call for the
function gnome_app_create_menus. You proceed in exactly
the same way with a toolbar, which you can define as fol-
lows:

PROGRAMMINGYOUR FIRST GNOME PROGRAM

2 · 2000 LINUX MAGAZINE 85

Anzeige

GnomeUIInfo toolbar [] = {
GNOMEUIINFO_ITEM_STOCK ("Exit", "Exit gnomU
esite",
end_application, GNOME_STOCK_PIXMAP_EXIT),
GNOMEUIINFO_SEPARATOR,
GNOMEUIINFO_ITEM_STOCK ("Help", "Help! HelU
p!",
end_application, GNOME_STOCK_PIXMAP_HELP),
GNOMEUIINFO_END
};

The call for GNOMEUIINFO_END, which defines the
closure of the menu or toolbar, is always important.
GNOME generates a wealth of pixmaps – small
images and icons – which should be used in a con-
sistent way to obtain the standard look and feel.
Table 1 lists some of the pixmaps used for toolbars.
A fully comprehensive list would be too exhaustive.

Pop-up menus are produced in a similar way.
They appear at the click of a mouse and only in cer-
tain parts of the window – i.e. in particular widgets.
The procedure uses the aforementioned method of
signals and callback functions. We simply link the
widget in which we wish to be able to call up the
pop-up menu with the function which creates the
menu. Menu entries can be easily added to the
menu, removed and switched on or off using the
relevant commands. We can also make "intelligent"
or context-sensitive menus which display certain
functions only in certain situations. A "Save"
menu, for instance, only makes sense if some data
has changed since the last save.

About us

GNOME applications also display dialog boxes to
display information or allow users to set prefer-
ences. One of the better known examples is the
About box, which offers information about the pro-
gram and its authors. This standard box is created
using a call of the function:

gnome_about_new ();

The function lists the authors, the program name,
version number, copyright notice, an explanatory
test and may display a pixmap. Everything is laid out
in an attractive dialog box. The exact procedure is
shown in Listing 2 (first.c), which also repeats every-
thing covered so far.

All finished

That was a lot to grasp! All the basics discussed here
are packed into one example program. It is com-
piled in exactly the same way as the first example,
except of course that you should not enter "mini.c"
in this case. As you can see, I have given the gno-
movision program the version number 0.0.2. This
leap to the next version seems justified in view of
the increased functionality.

We shouldn't leave this listing as it is without
some final comments. The small buffer buf contains
the text to be put on the button. Also, I define a box
with abox. The reason for this is that gtk+ uses what
are known as "Container" widgets in order to pack
and organise other widgets. Not all widgets can
function as containers, whilst others are designed
exclusively as containers. At least one box is needed
to pack and display other widgets. Packing (shown
here at the button abutton) is executed quite easily
with the call for the function gtk_box_pack_start.

gnome_app_set_contents informs GNOME that
the interesting part of the program is executed
within the box. The only new thing is the function
create_about_box (described above). In the same
directory as first.c there must be an image named
image.png, which improves the visuals of the dialog
box. Other graphics formats may also be used for
the image.

It is good practice to define or create the widget
first in gtk+ or GNOME. Then define its properties
and link it with the relevant signals. Finally, show it.
When you show it you should do the reverse of
what you did when you created it. The least impor-
tant buttons and so on come first and the window
widget last. This prevents ugly cross-fading effects
while waiting for the window to be displayed.

More documentation

Although developer documen-
tation on the GNOME pro-
ject is available, it is still
extremely disorgan-
ised. However, the
project organisers
have now set up a
special website for
developers. This will
hopefully help to concen-
trate all the documentation
in one place. In this respect,
gtk+ is also undergoing
improvements. ■

PROGRAMMING YOUR FIRST GNOME PROGRAM

86 LINUX MAGAZINE 2 · 2000

Table 1: Pixmaps for toolbars
GNOME_STOCK_PIXMAP_NEW New (e.g. for a new file)
GNOME_STOCK_PIXMAP_OPEN Open (e.g. an existing file)
GNOME_STOCK_PIXMAP_SAVE Save (e.g. a changed file)
GNOME_STOCK_PIXMAP_SAVE_AS Save as (a new file name)
GNOME_STOCK_PIXMAP_CUT Cut (e.g. a piece of text)
GNOME_STOCK_PIXMAP_COPY Copy (e.g. a piece of text)

Info

GNOME home page
http://www.gnome.org/

GNOME Developers web
site

http://developer.gnome.org/

GTK Information
http://www.gtk.org

■

