
KDE has become popular on a great many Linux and
Unix systems, not least due to its usability and quali-
ty. The number of KDE applications that are avail-
able which aim to make the user’s life easier is rising
all the time. Most KDE users don’t bother to ask
how these applications come about or why KDE is
so popular with programmers (if it wasn’t, there
wouldn’t be this huge number of programs.) How-
ever, there are some very good reasons for it.

The easy-to-learn API of the KDE and Qt
libraries and the portability of KDE/Qt programs to
most Unix platforms are two of the main reasons for
the popularity of KDE. Qt even allows developers to
compile their programs for MS operating systems.
Added to this, KDE provides the relevant develop-
ment tools that make this fast growth possible in
the first place. One of the most important of these
tools is KDevelop, an integrated development
environment (IDE) which has not only established
a name for itself among KDE developers but is

increasingly being used for other programming pro-
jects too. KDevelop has provided the developer with
a comfortable working environment, from which all
KDE users will eventually benefit.

Objectives of KDevelop

The KDevelop team, which, like many other open
source projects, consists of individual international
programmers who participate in the project on a
completely voluntary basis, is currently financed
entirely by the developers themselves. This includes
the cost of websites and development hardware.
Contributions are welcome, so please get in touch!

Of course, each member of the team has his
own, entirely personal reasons for participating in
such a project. An important objective for some is to
create applications that encourage a large number
of ordinary users to become enthused about Lin-
ux/Unix. However, for many the aim is to make life
easier for developers in particular. On the one hand

PROGRAMMING KDEVELOP 1.2

74 LINUX MAGAZINE 2 · 2000

For some time now KDevelop has

been the standard development envi-

ronment under Linux and Unix for writ-

ing portable KDE/Qt programs in C++.

This article shows that graphical IDEs can

make programming much easier under Unix too –

and not only when it comes to programming applications with graphical

user interfaces.

A C/C++ development
environment for UNIX

EXCITING
DEVELOP-

MENTS
RALF NOLDEN

there are the developers who have discovered Linux
as a development platform for free projects, not
least thanks to KDevelop, and who wish to give
something back to the Linux community. On the
other hand, there are those who believe a high
quality development environment is needed in order
to convince programmers from the business world
that it isn’t just cool to program for Linux but that it
is really simple and user-friendly too. Finally, of
course, there is the purely selfish motivation that by
creating such a fine tool as KDevelop the team
make it easier and quicker to develop other pro-
grams themselves.

The more developers who are encouraged to
develop a particular tool or start on a major project,
the larger the number of available applications
becomes over time. The old adage that there is no
application software for Unix has finally been laid to
rest. With KDE 2.0 approaching, we are currently in
one of the most exciting free software development
phases for the desktop environment, and everyone
can be part of this by making a contribution.

KDevelop aims to provide the broadest possible
support for compilers and platforms. This is actually
becoming very easy as the use of
autoconf/automake-compatible project frameworks
and the universally available GNU tools always
ensure that, firstly, KDevelop runs on most Unix sys-
tems (at least on those on which KDE also runs, i.e.
Linux, BSD, SCO UnixWare, HP-UX, AIX,..) and, sec-
ondly, that the applications developed using it can
be compiled and run on all these systems.

With this in mind, the fact that KDE is at the top
of our list of priorities should be self-explanatory. The
KDevelop environment provides complete support
for the development cycle of KDE applications. From
the generation of a basic KDE program through the
creation of a graphical interface to the production of
documentation, localisation and packaging, the IDE
covers almost every need. KDevelop is now devel-
oped using KDevelop itself. With around 80,000
lines of source code this provides a convincing
demonstration of the power of KDevelop.

Installation

We will now provide a few tips on installation so that
you can get started with KDevelop later on in this
article. Users running SuSE 6.4 or SCO UnixWare will
probably experience the fewest difficulties. These
distributions already contain version 1.1., which is
similar to the latest version and can be used for
development immediately without any problems. If
you do not have KDevelop on your distribution or
would like to use the latest version, you can down-
load the source code, and in many instances pre-
compiled RPMs too, from the KDevelop home page.
The website also contains up-to-date information on
the state of KDevelop, PostScript versions of the
complete documentation, the Webforum and
addresses of developers and mailing lists.

If you compile KDevelop yourself you will ensure
at the same time that you have as few problems as
possible later on when you generate your own
applications. Usually, all you need to do if you
encounter a problem is to install missing packages
such as library and include files.

What can you develop?

You can use KDevelop for any task to do with C and
C++. Although KDevelop is specifically designed for
KDE programming, there are a number of develop-
ers who use KDevelop for other projects. You might
be interested to know, for example, that the inte-

Fig. 1: Selecting the project type
using the KAppWizard

PROGRAMMINGKDEVELOP 1.2

2 · 2000 LINUX MAGAZINE 75

IDE (Integrated Development Environment)
Integrated development environments (IDEs) combine under one
interface all the tools required by a programmer such as compilers, linkers,
debuggers and editors. On top of this, they make the developer’s work as
easy as possible by automating repetitive stages of the development cycle.
They take on tasks such as project management and the generation of
makefiles, and provide help in searching for errors. IDEs allow program-
mers to develop their programs as rapidly as possible, reducing the “time
to market” compared to those using conventional development tools.

IDEs really come into their own when you are developing applications that
have a graphical user interface. Programming a graphical interface by man-
ual coding is time-consuming and tedious. IDEs allow the interface to be
designed visually, and then automatically generate the required code.

grated class parser doesn’t have any problems with
the Linux kernel code!

Development using KDevelop always begins by
generating a project. To make this easy a “Wizard”
is available. This is launched using the Project, New
menu. On the first page of the dialog you select the
type of framework, or program template, to be
generated. Programmers have at their disposal a
total of 13 different types which immediately create
executable applications and can be edited in KDe-
velop after they have been generated.

The project types are divided into several
groups:
• KDE applications: This group contains all the

skeleton programs available for development for
both KDE 1.x and the forthcoming KDE 2.0. Pos-
sibilities include a mini-application that consists
only of a main window, an SDI (Single Docu-
ment Interface) framework for a standard appli-
cation with menu panel, tool bar and status bar
(based on a document view model, as is com-
mon in GUI application development) and, a real
gem, a MDI (Multiple Document Interface)
framework for KDE 2.0, with which users can
create Windows-style programs that manage
several documents and their views simultane-
ously in one main window.

• Qt applications: The same skeleton programs
are available as for KDE, the difference being that
they are based exclusively on the Qt library. The
use of the pure Qt API allows developers to imple-
ment applications that can also be compiled and
used under Microsoft Windows because Qt, as a
cross-platform toolkit, supports not only Unix but
(in the “pro” version) the “other” operating sys-
tem too. An example of this is the circuit board
layout program Eagle, the next version of which is
currently being developed with Qt in order to
guarantee availability on all platforms as efficient-
ly as possible.

• GNOME applications: To the amazement of the
GNOME developer community and contrary to all
the prophecies of doom, KDE offers its hottest
competition the opportunity to profit from the
advantages of an IDE too. KDevelop provides a
framework that is based on the gtk+ library and
can be used as a fully adequate framework for
creating a GNOME application. Therefore, any-
one who, for whatever reason, cannot acquire a
taste for KDE as a Linux desktop does not have to
forego the comfort of KDevelop if they wish to
develop for GNOME.

• Terminal applications: Even if you only wish to
write a command line tool you will be in good
hands with KDevelop. For C and C++ there are
frameworks with which minimal “Hello World”
programs can be generated and then extended as
you wish. These frameworks also offer beginners
an easy way to take their first steps into pro-
gramming under Unix.

• Other: This is how KDevelop defines its own pro-
ject. For those of you who have already devel-
oped an application and would now like to edit it
using KDevelop, this option provides a framework
that allows you to convert to KDevelop without
any major migration problems. There are already
a number of projects that have achieved this
quite successfully.

On the next page of the Wizard we define the pro-
ject-specific options such as the program name, ver-
sion, directory, author and so on, and what we
want the Wizard to generate, from a complete
framework down to the “blank”
autoconf/automake layer.

On the third page you are offered the opportuni-
ty to develop the project using the version control
system CVS. However, this is only possible locally
when generating a new project. Users who wish to
import their source code from a CVS server can do
this with the help of the Cervesia program provided
by co-developer Bernd Gehrmann, and then activate
CVS support in KDevelop. CVS is used as standard
on free projects in which more than one developer is
involved. Otherwise it would not be possible to
develop these projects independently at the same
time and based on the same source code. However,
the use of a CVS system can also be a sensible
option for lone developers in certain situations. Any-

PROGRAMMING KDEVELOP 1.2

76 LINUX MAGAZINE 2 · 2000

GNU tools, configure and make
In autoconf/automake-compatible software packages that are distributed
as source code, a project is usually generated using the following instruc-
tions:

% make -f Makefile.dist

The command make, retrieves the instructions in the file Makefile.dist, usu-
ally the GNU tools automake, autoheader and automake. It uses them to
generate from Makefile.ams the Makefile.ins; and from the configure.in
file and the autconf macros the configure script. In the case of KDE/Qt pro-
jects, the perl script automoc or am_edit inserts the calls for the Qt-MOC
(Meta-Object Compiler for the C++ signal/slot extension) into the Make-
file.ins.

% ./configure

This executes the configure script, which checks the system to see that the
paths for include files, compilers, linkers and libraries needed are present
so that the generation of the project is guaranteed. It then generates the
Makefiles from the Makefile.in files.

% make

The command make executes the instructions in the Makefiles generated
by configure. In other words, it retrieves the MOC compiler, the C/C++ com-
piler and the linker in order to compile the source codes and link them to
create a program or library.

% make install

This command executes the instructions under the “install” tag of the
Makefiles. The effect should be that the programs, header files, libraries
and documentation etc. are installed on the system (For this to work, you
should be root.)

one who has already experienced the distress of acci-
dentally destroying their project knows how valuable
a CVS version can be as it can restore the program
within seconds. The usual CVS functions such as
add, delete, update and check are available later on
in the file tree of the KDevelop project directory.

The next two Wizard dialog pages define the
file headers which insert the date, author and
licence information into the source text so that you
can be identified as the author of the source at any
time and your rights are covered. When you get to
the last page, a click on the “Generate” button is all
that is needed: the rest is trivial (or magic depending
on how you view it!). As soon as the generation has
been completed, you can exit the KAppWizard
using the “Exit” button. The new project is then
loaded automatically and ready for editing from in
the source code editor. Although it won’t do very
much you can compile and run the program to
check that everything works.

The Linux magazine browser

KDevelop has too many features to cover them all in
the space of one short article. The best approach is
to demonstrate the typical procedure for creating
an application using a small example. The example
program is rather nice – it is a web browser: one
that is limited to viewing one particular web page,
without any graphics, but a web browser neverthe-
less. This example will introduce you to the world of
KDE programming without very much prior knowl-
edge. Our program will be developed and extended
step by step with the emphasis on how to use KDe-
velop while editing source code. We will also take a
closer look at the concept of the Qt signal/slot
mechanism, which makes GUI programming decid-
edly easier.

First of all, start KDevelop either via the “K”
menu or by entering “kdevelop” in a terminal win-
dow. If you are starting KDevelop for the first time
you will be guided through the basic configuration
of the IDE by a setup assistant. You will immediately
see which programs or packages still have to be
installed. If you are unsure, KDevelop always offers
you context sensitive help and, in the assistant, a
“help” button using which you can move immedi-
ately to the description of the installation procedure
in the manual.

To create the example program use the KApp-
Wizard in KDevelop. Select “KDE-Mini” as the
application type and enter “LinuxMagazine” as the
project name. Fill in the other fields with your own
details. After the program framework has been
generated, KDevelop presents you with the example
program. (Note: if you see any errors during the
generation stage, you will need to install the miss-
ing packages indicated by the errors, delete the
partly-generated project and try again.)

You can now compile the program to test
whether everything is working as it should. To do

this, use the “execute” button on the tool bar, rep-
resented by a small gear-wheel like the one on the
“K” menu. KDevelop then retrieves make, which
executes the commands in the makefiles. These files
contain instructions for controlling the compiler and
linker, enabling you to generate the program cor-
rectly. Once the compile procedure is finished, the
program is started automatically and you have
stepped successfully into a new world of program
development! (Again, if the program doesn’t com-
pile, the reason is probably because of libraries and
include files that are required and which have not
been installed.)

Information is all

Now we turn our attention to the finished product.
You will soon realise that not only do you need to
know what your program is supposed to do, but
also how to find the information you need to create

PROGRAMMINGKDEVELOP 1.2

2 · 2000 LINUX MAGAZINE 77

[top]
Fig. 2: KDevelop showing
our example project

[above]
Fig. 3: The documentation
browser: all the information you
need at a glance.

the program as quickly as possible. Therefore, infor-
mation is everything! Without documentation you
will not be able to generate a program with KDE/Qt.
But KDE would not be KDE if there were not a clever
solution to this. With the help of the documenta-
tion tool KDoc, a set of HTML documentation (the
API documentation) is generated from the header
files. KDevelop relieves you of this task too. In the
case of SuSE 6.4 and the KDK (KDE Development
Kit, provided by the KDevelop team and also avail-
able from the KDevelop home page, this is fully pre-
compiled and installed for KDE 1.1.2). What’s more,
you can generate your own new set of documenta-
tion (for the KDE 2.0 API for example) at any time
using KDevelop. The documentation provided by
TrollTech with the Qt library is integrated automati-
cally.

The next step is to update the KDevelop search
index so that you can get access to the documenta-
tion and can quickly find the descriptions of particu-
lar topics, classes and functions when you need to.
You can also choose to use htdig or glimpse as a
search engine. Commercial developers rely on htdig
as glimpse is only freely available for non-commer-
cial usage and is no longer shipped on most distrib-
utions.

KDevelop itself contains another five manuals
in the form of online help, which should provide
you with further help in almost any situation – at
least as far as programming is concerned. User
manuals, tutorials, programming manuals and
KDE references provide you with a solid basis on
which to learn about the IDE and how to use it
efficiently to create more complex programs. A
copy can be ordered in book form from the KDe-
velop home page.

Tree views...

There are a few navigation tips you should learn if
you want to become a proper KDevelop power user
right away. In the left-hand section of KDevelop you
will find tree views placed on tabs with the follow-
ing captions:
• CV (ClassViewer): This is the class browser for your

project’s classes and functions. You can use it to
skip to class declaration or function implementa-
tion. Using a context menu you can access addi-
tional functions such as skip to method declara-
tion, add files, classes, methods and attributes etc.

• LFV (Logical file tree): This is where you can sort
your project’s files in folders based on their file-
name extension so that you can access them
more quickly. Note: in the KDevelop setup you
can set the option Autochange (automatically
changes tree view during programming) either to
class browser or logical file tree.

• RFV (Real file tree): This is where you can view the
project directory as you can in the file manager. It
gives you access to all the files. Using a context
menu, RFV provides you with extended functions
such as delete, add to the project and the CVS
commands.

• DOC (Documentation tree): The documentation
view offers you access to the online help included
with KDevelop, the KDE/Qt documentation and
your project’s documentation. In the KDE/Qt doc-
umentation you can also browse down to the
functions of the classes available and find the
information you require without a lengthy search.

• VAR (Variable tree): This view is available while
applications are being debugged. It indicates the
status of the runtime variables you use.

PROGRAMMING KDEVELOP 1.2

78 LINUX MAGAZINE 2 · 2000

Fig. 4:
The KDevelop
dialog editor

...and output views

Below the tree views are the output views. These
are divided into windows:
• Messages: In this window KDevelop shows all the

output of external tasks such as make, the com-
piler etc. If an error message is shown, a click on
it takes you to the error (automatic output locali-
sation).

• StdOut: Displays the program output during a
debugging run at command line level.

• StdErr: Standard error output of project applica-
tion during debugging runs.

• Breakpoint: Displays the breakpoint of the debug-
ger and number of hits during a debugging ses-
sion.

• Frame Stack: Displays the application’s assigned
frame stack during debugging.

• Disassemble: Assembler output of program code.

Work view

The work view is where you find the editor window
for header, resource and other files, the source code
editor window, the documentation browser and the
tool window in which KDevelop starts any external
programs that are required (such as KIconEdit for
editing toolbar icons.) From the tool menu you can
add other programs for use within KDevelop.

The dialog editor

You can call up KDevelop’s dialog editor from the
view menu or using the relevant tool bar button.
Using it you can design the graphical interfaces of
your applications and have them output as C++
source code. You can then edit the classes produced

in the source code editor with the help of the class
view. Currently the dialog editor in KDevelop only
supports Qt 1.4x and KDE 1.1.2 APIs. If you only use
standard components, however, you should not
have any problem editing KDE 2.0 projects.

Implementing the browser

So to the creation of our example application.The
Linux Magazine browser should be a simple HTML
browser which, when started, loads the Linux Mag-
azine home page at http://www.linux-
magazine.co.uk/ and displays it. First, the derivation
of the main widget must be changed from QWidget
to KHTMLView, and the khtmlw and kfm libraries
must be linked to the program. Replace the deriva-
tion in the declaration of class LinuxMagazine and
in the function stack of the relevant constructor.
You must also change the include file from #include
<qwidget.h> to #include <htmlview.h>.

Next, open the project options via the “Project”
menu and switch to the “Linker options” tab. Enable
the “khtmlw” and “kfm” checkboxes. After the dia-
log has been closed by clicking “OK” the configure
script is automatically run so that the makefiles can
be newly generated. Now allow the program to
compile from scratch. When everything is running
we can start implementing the actual functions. We
implement a new function which downloads and
displays an HTML page. At the same time we declare
this as a “slot” so that we can continue to browse
from this page by clicking on hyperlinks.

The HTML widget provides a signal, which we
can link with this slot. The only things to note are
the parameters of the signal: they must match the
slot. Let’s take a closer look at the API of the class
KHTMLView (you will find these in the documenta-

PROGRAMMINGKDEVELOP 1.2

2 · 2000 LINUX MAGAZINE 79

[left]
Fig. 5: The Project Options dialog box

[right]
Fig. 6: Adding a member function

tion browser in the khtmlw library). You’ll see that a
URLSelected() signal is available there. If the user of
the program selects a link with the mouse, this sig-
nal supplies us with the URL. To generate the new
function, select the “add method” function via the
class LinuxMagazine in the class browser. When the
dialog appears enter void as a return value and
showURL(KHTMLView* view, const char* url, int,
const char*) as a method name. The class browser
adds the final semicolon automatically. Some
description explaining what the function does won’t
hurt either.

Finally, we select “public” and “slot” as a modi-
fier. OK the dialog box and you will be placed in the
code implementing the new function. We must
now consider how we wish to load the page. As
KFM fortunately already provides this function, we
can simply use it. For brevity’s sake, only the general
procedure is described. KFM loads the HTML page
for us into a temporary file which we open using
“QFile” and read into a string using
“QTextStream”. We then execute the view func-
tions of the HTML widget using this string and
remove the temporary file.

Finally, we have to execute this function using
the URL of the Linux Magazine home page, which
we execute in the constructor. We are not bothered
by the fact that the method is also a slot as slots can
be used as normal functions, the only difference
being that a signal can also be used to execute
them. Lastly, we insert a connect in the constructor,
which links the URLSelected() signal to our slot
showURL().

You will find the source code of our example in
the following listings. We hope that the brief exam-
ple has given you your first insight into KDevelop
and KDE programming: a taster before your first
program of your own. Another small tip to finish
on: If you are looking for ideas for your own appli-
cations, take a look at the source codes of other
programs, which can be downloaded from the KDE
home page. If your program will also be released
under the GPL you can, of course, re-use this source
code directly: you don’t need to re-invent the
wheel.

You can now start your first KDE program. If
you like, you can install it on your system by open-
ing a console, switching into the project directory
and entering the command make followed by a su -
c “make install”. After you have restarted the K-Pan-
el you can access the Linux Magazine browser from
the K menu.

Debugging included

Another technical highlight of KDevelop is the inter-
nal debugger. This can be seen in action in figure 7.
Tool bar buttons to the top right of the window let
you execute the program being tested a line at a
time, stepping into or over function calls and so on.
These buttons can be used as a floating tool bar,
giving the advantage that you don’t have to con-
stantly switch between the IDE and the program
window when debugging GUI applications. The
program window remains in the foreground even if
you debug step by step through the source code.

Info

Kdevelop homepage:
http://www.kdevelop.org

KDE homepage:
http://www.kde.org

Homepage for KDE devel-
opers:

http://developer.kde.org

TrollTech AS (Qt library):
http://www.trolltech.com

■

PROGRAMMING KDEVELOP 1.2

80 LINUX MAGAZINE 2 · 2000

Fig. 7:
Debugging the

Linux Magazine browser
with KDevelop

In the tree view the status of variables and the
function stack can be observed in the VAR window.
In the output window you can find windows for
observing breakpoint hits and stack frames. The
program can also be executed at machine instruc-
tion level using the disassembly window. Informa-
tion about the contents of memory and processor
registers can be obtained using an additional view
in which the status of the libraries linked to the
application can also be viewed.

For advanced users, KDevelop offers the option
to set breakpoints in library calls via what are known
as “Pending Breakpoints” even if the libraries are
not loaded yet.

KDE 2.0 and KDevelop 2.0

Let’s finish with a quick look at the near future.
With KDE 2.0 approaching, there is going to be
some more action in the Linux/UNIX domain, and
not only in terms of innovation and speed. The KDe-
velop team is currently developing the second ver-
sion of the IDE and is, of course, making substantial
use of the new technical opportunities presented by
KDE 2.0. This mainly concerns the user interface,

which will support an MDI interface in future. The
tree and output views can also be separated from
the main view and used as self-contained windows.
This will particularly please those developers who
use XFree 4.0 in Multi-Monitor mode as they will be
able to distribute KDevelop to all monitors. Work is
also being done on the interchangeability of the
editor so that vim fans can use their one true love.

The fact that KDevelop 2.0 isn’t ready yet
shouldn’t stop you from developing for KDE 2.0.
KDevelop 1.2 supports it already. To make getting
started easier, the tutorial supplied contains a KDE
2.0 application which you can try out straight away,
so allowing you to keep your finger on the pulse.
We wish you great success, and hope to see your
program soon on the list on the KDevelop website
where all the programs created using the tool are
listed. ■

Listing 3: linuxmagazine.cpp
#include "linuxmagazine.h"
#include <kfm.h>
#include <qfile.h>

LinuxMagazine::LinuxMagazine(
QWidget *parent, const char *name) :
KHTMLView(parent, name)
{
showURL(this,"http://www.linux-magazine.coU

.uk/",1,"test");

connect(this, SIGNAL(URLSelected(
KHTMLView*,const char*,int,const char*)),
SLOT(showURL(KHTMLView*, const char*,
int,const char*)));

}

LinuxMagazine::~LinuxMagazine()
{
}

/* opens the url with KFM and displays it. */
void LinuxMagazine::showURL(KHTMLView* ,
const char* url,int,const char*)
{

QString str,text;
KFM::download(url,str);

QFile file(str) ;
if(file.exists()){

file.open(IO_ReadOnly);
QTextStream t(&file);
while (!t.eof()) {
QString s = t.readLine();
text.append(s);
}

begin(str);
parse();
write(text);

end();
show();
KFM::removeTempFile(str);

}
}

PROGRAMMINGKDEVELOP 1.2

2 · 2000 LINUX MAGAZINE 81

Listing 1: main.cpp
#include "linuxmagazine.h"

int main(int argc, char *argv[])
{
KApplication a(argc, argv, "linuxmagazine");

LinuxMagazine *linuxmagazine =
new LinuxMagazine();

a.setMainWidget(linuxmagazine);
linuxmagazine->show();

return a.exec();
}

Listing 2: linuxmagazine.h
#ifndef LINUXMAGAZINE_H
#define LINUXMAGAZINE_H

#include <kapp.h>
#include <htmlview.h>

class LinuxMagazine : public KHTMLView
{
Q_OBJECT
public:
/* construtor */
LinuxMagazine(QWidget* parent=0,

const char *name=0);
/** destructor */
~LinuxMagazine();

public slots: // Public slots
/* opens the url with KFM and displays

it. */
void showURL(KHTMLView* widget,

const char* url,int,const char*);

};

#endif

