
Infra-red is the widely-used standard for the remote
controls supplied with consumer devices. Only a
few up-market products use radio and thus do not
have to rely on an unobstructed line of sight to the
target device. Home computers, too, can be con-
trolled remotely with the appropriate equipment.

Before we examine the subject in greater depth,
let’s first take a look at the fundamentals of infra-
red remote controls. In essence, the transmission
process can be described as follows (and is illustrat-
ed in Fig. 1). When a key on the remote control
handset is pressed, the value corresponding to this
key is determined. This value, expressed as a binary
number, is modulated upon a carrier signal (normal-
ly in the range 30 to 40 kHz) and leaves the handset
via the infra-red transmitting diode.

In practice, however, different manufacturers
have pursued separate paths, for example in the

choice of carri-
er frequency. The fre-
quencies 32, 36 and 38 kHz
are all widely used, whilst Sony uses > 40 kHz. Dif-
ferent formats are used for assigning a binary value
to each of the keys on the remote control. Last but
not least, several different forms of coding are
employed to modulate these data bits on to the car-
rier signal in a suitable form. For a fuller picture of
what happens you can try an interactive tutorial on
the Web where, taking a Sony remote control as an
example, you can marvel at the signals generated.

Having arrived at the receiver end, the infra-red
beam must first pass through a filter that masks out
all interfering light frequencies. After that it falls on

PROJECTREMOTE CONTROL

2 · 2000 LINUX MAGAZINE 67

Video recorders, televisions,

hi-fi systems and satellite

receivers: just about every

consumer entertainment

device now comes with its

very own infra-red remote

control. Your Linux computer,

too, can be controlled from

the comfort of your armchair.

To find out how, read on…

Linux Infra-red Remote Control

LINUX
TAKES

CONTROL
KARSTEN SCHEIBLER

PROJECT REMOTE CONTROL

68 LINUX MAGAZINE 2 · 2000

Types of encoding

Let’s take a closer look at the transmission process. The remote control’s keypad is connect-
ed to a logic circuit that continuously checks for depressed or released keys. If a change
takes place, the transmission chip picks out the bit code for the key concerned and very
often adds on a further bit that indicates whether the key has been pressed or released.
These bits might be described as the data part of the bit code. Also added to the code is the
so-called address part. This is nothing more than a fixed bit sequence in the remote control
and base unit. This code differs, even for different devices from the same manufacturer. This
ensures that only the intended device responds to the command from the remote control.

The resultant overall bit code is usually between 14 and 32 bits in length, the length of the
data and address parts differing from manufacturer to manufacturer. Converted into a
stream of high and low signal levels, the result is a self-synchronising serial data stream.
These level states – also referred to in this context as mark (high) and space (low) – may not
directly correspond to the ones and zeros of the binary bit pattern. The encoding that is
used always utilises both levels for each bit. It is the encoded binary value that modulates
the low-frequency carrier frequency (in theory this is nothing more than an AND operation
between the data stream and the carrier generator) which is finally emitted via the infra-
red transmission diode.

Figure 2 shows some details of the three most frequently used encoding methods. The first
two methods each vary the time during which the level of the data stream is high (Pulse
Width Modulation) or low (Pulse Interval Modulation) to differentiate between the bit
states 0 and 1. However, the third method is the most commonly used. It represents the two
bit states through different signal edge changes (BiPhase coded). To help the receiver iden-
tify the start of a new bit code, some models of remote control also send a long pulse and a
space before the encoded data itself is transmitted.

1 2 3

4 5 6

Vol

– +

Vol - 000001
- Vol + 000010
1 000011
2 000100
3

incl. address = 0110101101 000010

Encoding

Modulation on
carrier signal

Transmitter
LED IR Beam

Table with information
about Key status;
Vol+ is selected

Data block

Header

Receiver Diode

Decoding
0110101 000010

Demodulation

Address OK?
Perfom action accord-

ing to data block

Change volume

Band-pass Filter

IR Beam

[left]
Fig. 1a: The remote control generates
a code for the key that was pressed
using a device-specific address and a
binary code for the key

[right]
Fig. 1b: The receiver demodulates the
signal, determines the
original key code and initiates the
corresponding action.

the infra-red receiving diode. On the output of this
device the modulated low-frequency carrier signal
will appear. To guarantee this, a band-pass filter is
connected in series with the receiving diode, which
more or less ensures that only the frequency of the
carrier signal passes through. Other infra-red dis-
turbing influences can also be effectively filtered out
in this way, such as solar radiation. Finally, decoding
of the received bit-code takes place, so that at last
the desired action may be carried out such as
changing the volume level.

Computer control

If you want to use a remote control on your PC,
there are a number of options. Various TV cards
offer possibilities. Many come supplied with both a
remote control and a matching infra-red receiver
(for example, the Hauppauge WinTV/Radio.) This
makes matters really simple and saves you having to
build yourself an appropriate receiver. Apart from
this, you can exploit the TV functionality of cards
that have the Brooktree 848/878 chipset. Note that
none of these TV cards come supplied with suitable
Linux drivers for the remote control. There are
open-source drivers for the various models, but it
must be admitted that some of them need some
further development.

One further remark concerning the remote con-
trol of TV cards. A short while ago Hauppauge cards
were bundled with a remote control for connection
to the serial port, the product in question being the
Anir Multimedia Magic from Animax. The infra-red
receiver of this remote control can be driven in
almost the same way as the serial receiver just
described and can also be used under Linux.

Those with no TV card at their disposal and
those who prefer to take out the soldering iron can
always make use of the serial interface (Fig. 3)
by connecting an infra-red receiver to it. You can
build a suitable receiver yourself with very little
effort. In this case we make use of the fact that the
serial port’s UART triggers an interrupt whenever
the DCD signal line changes level. A special driver is
needed to respond to this. As a third choice the par-
allel port can be used with a similar self-built
receiver, although greater effort is involved. Circuit
diagrams for both types of receivers can be found
on the LIRC home page.

Some infra-red receiver designs that are con-
nected to the serial interface don’t require a special
driver since control is done through /dev/ttySx. The
number of components required in the receiver is
only marginally greater compared to that of the
basic DCD receiver. However, the design uses a
PIC16xxx microcontroller. This is an obstacle for
many would-be builders as they will not have the
necessary equipment to program the device.

Using a dedicated infra-red receiver isn’t the
only option. Some of the IrDA ports on PCs can be
coaxed into transmitting and receiving the signals

of an infra-red remote control. Due to the lack of
hardware I have not yet been able to acquire any
personal experience with this. Further information
about it can be found on the LIRC home page, but
in the end there is no substitute for actually trying it.

Another possibility is IRman. Available as a com-
mercial product for 33 US dollars, this device is also
connected to the serial port and uses a PIC as
decoder. A series of drivers are available from the
manufacturer for specific (Windows) programes.
If you are interested in finding out how to control
the device you may take a look at the Perl code
from Cajun.

One option for building your own receiver is to
use the SFH506 series integrated circuits from
Siemens (now Infineon). These are chips containing
an infra-red receiving diode, band-pass filter and
demodulator (Fig. 4). Because of the integrated

PROJECTREMOTE CONTROL

2 · 2000 LINUX MAGAZINE 69

Pulse Width Modulation - Zero and One are distinguished by the length
of the signal high state

Pulse Pause Modulation - the time between pulses represents the
information (frequently called REC-80, used by Panasonic)

BiPhase Coded - the transition (low to high or high to low) determines
0s and 1s. (also known as RC5 and used by Philips)

0 1

0 0 1 0

0 0 1 0

0 1

0 1

0 0 1 0 0

Fig. 2: The three commonly used
types of modulation, Pulse
Width Modulation (Sony), Pulse
Interval Modulation (REC-80,
Panasonic) and BiPhase Coding
(RC5, Philips).

Pin #1 DCD Data Carr ier Detect
Pin #2 RD/RX/RXD Receive Data
Pin #3 TD/TX/TXD Transmitted Data
Pin #4 DTR Data Terminal Ready
Pin #5 GND Signal Ground
Pin #6 DSR Data Set Ready
Pin #7 RTS Request to Send
Pin #8 CTS Clear to Send
Pin #9 RI Ring Indicator

Fig. 3: The serial interface also
provides the infra-red receiver
with the supply voltage via RTS
and DTR.1 2 3 4 5

6 7 8 9

functionality there are a number of types: SFH506-
30, SFH506-36, SFH506-38 which correspond to
the carrier frequencies 30, 36, 38 KHz. It may be dif-
ficult to get hold of an SFH506 now since Siemens
has stopped producing them.

There is a similar integrated circuit though with
the same functional scope: the TSOP1736/38/40
[4]. Whichever one is used, SFH506 or TSOP17xx,
the operation is identical. You apply a supply volt-
age to two of the three connector pins and obtain
the serial data stream on the third pin when an
infra-red signal with the correct carrier frequency
has been received.

This data stream can now be passed to DCD so
that using the UART interrupts the duration of the
pulse and space can be determined. Once the dura-
tions and level states plus the encoding method are
known it is possible to deduce the bit code that was
sent.

Readers who are familiar with the serial inter-
face will already know that a supply voltage can be
obtained from this itself, which you can use to pow-
er the integrated circuit (serial mice do this for
example.) This can be achieved by connecting RTS
which provides a voltage level of 8 to 12 volts.
This voltage can be reduced to the required
5 volts using resistors or, better, a voltage regulator.
You need to be careful to keep the load on the
interface low, even though a few milliamps are all
that are needed. The serial interfaces of notebooks
can cause problems as the voltages they provide
may be too low to use.

Of course, the hardware is only half the story.
Software is also required to enable the received sig-
nals to be decoded. For the Linux user, this is where
LIRC can help. LIRC stands for Linux Infra-red
Remote Control and provides a way to decode and
implement actions as a result of infra-red signals
received from remote controls. LIRC also provides
functionality for the transmission of infra-red sig-
nals, though only at the driver level. Further soft-
ware for this can be found in the xrc packages
which you will find on the LIRC home page.

In earlier versions of LIRC only the serial type of
receiver was supported. Since then there are now
also kernel modules for several TV cards as well as
the IrDA port. In the archive lirc-0.6.0.tar.gz all
these drivers can be found in directory drivers/.

Using ./configure; make; make install, the con-
figuration and installation are carried out in the usu-
al way. After entering ./configure a dialog-based
shell script should appear. Here you select the infra-
red receiver type and where necessary adjust a few
compile-time settings. The subsequent make should
then generate the binaries. By running invoking
make install as root you can now copy the files to
the usual places under /usr/local/. The entry:

alias char-major-61 lirc_driver.o

in /etc/conf.modules ensures that the LIRC driver is
linked automatically into the kernel through ker-
neld/kmod if necessary (»driver« here represents the
actual driver name, for example <«serial« for
lirc_serial).

The majority of infra-red receivers require their
own driver in the form of a kernel module. (Fig. 5).
Here the driver takes over direct communication
with the hardware and hands over the received data
to a daemon. This attempts to assign these signals
again to a key on the remote control.
A further service program from the LIRC package
allows other programs to be started, depending on
the particular key that was pressed. I will go into
that in detail later.

Let’s take a closer look at a kernel driver for
LIRC, taking lirc_serial as an example. Normally, this
driver is loaded as a kernel module, hence the first
function invoked is init_module(). There is, of
course, a corresponding function that runs the ker-
nel on removing the module, cleanup_module().

PROJECT REMOTE CONTROL

70 LINUX MAGAZINE 2 · 2000

gmp, ...

/dev/lircm 8 (named pipe (FIFO) ==> one connection)

lircmd
(lircmd.conf)

irexe, xawtv ...
(~/.lircrc

/dev/lircm 8 (socket ==> several connections)

lircd (lircd.conf), irrecord, mode2

Kernel space

User space

/dev/lirc /dev/ttySx

(character devices driver ==> one connection)

LIRC devices diver
(including ioctl interface)

Linux serial driver

serial/parallel
port TV card

Irman/RemoteMa-
ster/...

S
O

F
T

W
A

R
E

S
O

F
T

W
A

R
E

H
W

Fig. 4: Besides an optical
filter (black housing) com-

mercially available
receivers such as the

SFH506 or TSOP 17XX
contain a band-pass filter,

gain controller and the
output stage.

LIRC is neatly constructed as a layer model. Only a few programs will need exclusive access to
the hardware devices; a number of clients can connect simultaneously to the lircd socket.

First of all the code checks whether the I/O
region of the serial interface is still available at all. If
so, this is initialised. The init_port() function imple-
ments this for us.

In the next step, the lirc_serial module registers
itself in the kernel as a character device via the call-
up register_chrdev(). Here the lirc_fops structure
contains the pointers to the individual functions
that can be carried out on the device (open, close,
read, write, ioctl). Once all of this has been success-
fully completed, the driver can start its real work.

The irq_handler() plays a central role in all of
this. It responds to interrupts triggered by a change
in level on the DCD pin of the serial interface. Each
time the interrupt handler is called it establishes
whether it is dealing with a pulse or space and
determines the time in microseconds since the last
call. It combines these two values into an integer (a
pulse/space-timestamp) and places it in a ring buffer
which the function lirc_read() is able to read out. By
this means the data passes from the kernel into the
user space.

The TV card drivers use a different format. They
are not supplied with time differences by the hard-
ware but instead receive the bit codes ready for
decoding. This means that lircd no longer has to
deal with this conversion. With an ioctl() call, lircd
ascertains the particular format that the driver deliv-
ers.

For more information about kernel module pro-
gramming refer to the Linux Kernel Module Pro-
gramming Guide.

As already mentioned, LIRC can also transmit
infra-red signals. This also takes place via the serial
interface, or more precisely, via DTR, with the aid of
the lirc_serial driver. For this you have to compile it
with #define LIRC_SERIAL_TRANSMITTER. As a rule
though that is set up via ./configure. For transmis-
sion we require three things: a carrier frequency, the
serial data stream that contains the encoded bit
code and an infra-red transmitting diode.

There are two possibilities here. First, you could
output the modulated carrier frequency via DTR
straight away and would need only to pass this sig-
nal to an infra-red transmitting diode. However, at
38 kHz it is difficult to get the exact timing. Second,
you could output the serial data stream via DTR and
have it modulated by hardware connected to it. The
first option can be achieved by setting #define
LIRC_SERIAL_SOFTCARRIER in lirc_serial (which is
likewise settable via ./configure). The transceiver
example integrated circuits on the LIRC home page
use this method.

If you look more closely at the source code of
lirc_serial in the LIRC package (Listing 1), you will
notice that only a warning is output if the I/O region
is already allocated. This takes into account the fact
that many users have compiled the generic serial
driver into the kernel. It makes more sense to also
compile the generic driver as a module and put
lirc_serial.o before serial.o for »modproben«.

Listing 1: Some snippets of source code
int init_module(void)
{
int result;

if ((result = init_port()) < 0)
return result;

if (register_chrdev(major, LIRC_DRIVER_NAMU
E, &lirc_fops) < 0)

printk(KERN_ERR LIRC_DRIVER_NAME {
": register_chrdev failed\n");

release_region(port, 8);
return -EIO;
}
return 0;

}

/*
Sections of the IRQ handler for lirc_serial
*/

void irq_handler(int i, void *blah, struct ptU
_regs *regs)
{
/* ... */
do{
counter++;
status=sinp(UART_MSR);
if((status&UART_MSR_DDCD) && sense!=-1)
{
/* get current time */
do_gettimeofday(&tv);
dcd=(status & UART_MSR_DCD) ? 1:0;
deltv=tv.tv_sec-lasttv.tv_sec;

/* ... */

data=(lirc_t) (deltv*1000000+
tv.tv_usec-
lasttv.tv_usec);
frbwrite(dcd^sense ? data : (dataU

|PULSE_BIT));
lasttv=tv;
wake_up_interruptible(&lirc_waitU

_in);
}

} while(!(sinp(UART_IIR) & UART_IIR_NO_INTU
)); /* still pending
? */
}

This inconspicuous while loop was not implemented
in older versions of the driver, which had the effect
that under unfavourable conditions the driver no
longer executed its irq_handler(). This could only be
overcome by removing and reloading the kernel
module.

As shown in listing 2, the Hauppauge TV card
driver reads the received data. Note that the format
of the data is different from that supplied by
lirc_serial. lircd uses ioctl() to determine the data
format in question.

The interface between kernel driver and user
space applications is the device file /dev/lirc, which
make install creates with mknod /dev/lirc c 61 0. The
receiver types that are driven via /dev/ttySx consti-
tute an exception here. The program mode2 from
the directory tools/ of the LIRC package is a simple
example of how one communicates with a LIRC dri-

PROJECTREMOTE CONTROL

2 · 2000 LINUX MAGAZINE 71

ver: open /dev/lirc and read out integer values. The
values read are to be interpreted differently depend-
ing on the particular type of driver: they are either
pulse/space timestamps (serial drivers) or bit codes
(TV card) – mode2 recognises only the first type and
continuously outputs all received pulses/spaces.

The LIRC daemon lircd is employed at this point
to convert the received signals into a simple useable
form. This daemon returns the names of the keys.
For this, though, it also needs a configuration file
containing the parameters of the remote control
(this file is called lircd.conf, and it is expected in
/usr/local/etc/). If no suitable file can be found in

directory remotes/ you can create one yourself with
irrecord (which is found in the daemons/ directory
normally installed below /usr/local/bin/). The only
parameter that you have to enter here is a filename
into which the configuration file is to be saved.

Since /dev/lirc normally has file mode 644
(which allows users only read access to the device)
you must either start irrecord as root or change the
file mode. Should irrecord complain with the mes-
sage »Something went wrong« and not be able to
generate a configuration file you can also specify
the additional switch - - force on the command line
to obtain a configuration file in RAW mode. This
should work in any event.

It is worth taking a closer look at the file gener-
ated. First of all, it can be seen that all the data for
the remote control is encapsulated in a „begin
remote … end remote” block. This allows trouble-
free placement together in one file of several such
blocks that are to be used when analysing the
received signals. In addition, the particulars of the
remote control’s timing parameters are very infor-
mative.

Since we now have a file in /usr/local/etc/ con-
taining the relevant timing parameters of the
remote control used, there is nothing to prevent a
start of lircd (daemons/, /usr/local/sbin/). With the
program irw (tools/, /usr/local/bin/) you can now
check whether lircd is going about its work correct-
ly. As soon as you press a couple of keys on the
remote control, something similar to that shown in
listing 3 should be displayed on the terminal (in this
case with the previously mentioned Anir Multimedia
Magic and the corresponding configuration file).
There are always four parameters per line: 1 - bit
code, 2 - repetition counter (if the key remains
depressed for an extended period), 3 - name of the
key, 4 - name of the remote control.

Listing 3: Parameters of Anir MultiMedia Magic
00000000005ba4f0 00 CD_UP ANIMAX
0000000000de21f0 00 RADIO_DOWN ANIMAX
0000000000de21f0 01 RADIO_DOWN ANIMAX
00000000005ea1f0 00 RADIO_UP ANIMAX
0000000000dc23f0 00 TV_DOWN ANIMAX

PROJECT REMOTE CONTROL

72 LINUX MAGAZINE 2 · 2000

Hauppauge TV cards
Some manual intervention is necessary to coax the LIRC driver lirc_haup to
work with Hauppauge TV cards (WinTV/Radio). A Red Hat 6.1 installation
with kernel 2.2.15 and the package lirc-0.6.0 served as the base system
for a test.

To start with, the kernel has to be compiled with support for BT848 (Char-
acter Devices->Video For Linux) and MSP3400 (Sound->Additional low level
sound drivers) in order to be able to use the TV card at all. It should be com-
piled as a module, otherwise the addresses of the I2C functions are not
exported and as a result are not available to kernel modules. In that case,
loading the kernel module lirc_haup would fail.

As can be seen in the source code excerpt from read_raw_keypress, these
functions are referenced. Before you compile the kernel, however, the file
/usr/src/linux/include/linux/i2c.h still has to be patched: in line 99 you must
replace the #if 0 with if 1. A patch file is available for this in the LIRC pack-
age under drivers/lirc_haup/patches/. If they are not already present you
must also insert the following lines in /etc/conf.modules to allow the
dynamic linking of the modules into the kernel through kmod:

alias char-major-61 lirc_haup.o
alias char-major-81-0 bttv.o
pre-install bttv modprobe msp3400.o

Once the kernel is more or less ready you can get on with the configura-
tion of LIRC. Here you select “Hauppauge TV Card (old I2C Layer)“ as the
driver. Under contrib/ you can copy a start script for /etc/rc.d/init.d/ and set
the corresponding S- and K-links in order to start lircd each time the system
is booted. So far so good. After this step we found LIRC worked wonderful-
ly but the TV tuner would apparently no longer respond. This problem
occurred only if the BT848 support (bttv.o) was installed as a module. As
soon as it was permanently compiled into the kernel the TV tuner worked
faultlessly. The disadvantage was that LIRC no longer worked due to the
missing I2C symbols. However, with a small modification in /usr/src/linux/dri-
vers/char/i2c.c we were able to get this problem under control. Somewhere
near to line 430 is the beginning of the EXPORT_SYMBOL block. This is
bounded by an #ifdef MODULE … #endif that also includes the functions
init_module() and cleanup_module(). If, using cut and paste, you move the
line containing #ifdef MODULE to be ahead of these two functions, the I2C
symbols can then be accessed from other kernel modules, although the
bttv driver itself is not present as a module.

One further hint: when problems are experienced with the TV card drivers
it is generally always worth checking out the latest CVS source tree, since
there are usually more up to date versions of the driver to be found there.

Listing 2: Read out of the received data
static __u16 read_raw_keypress(
struct lirc_haup_status *remote)
{ /* ... */
/* Starting bus */
i2c_start(t->bus);
/* Resetting bus */
i2c_sendbyte(t->bus, ir_read, 0);
/* Read 1st byte: Toggle byte (192 or 224) */
b1 = i2c_readbyte(t->bus, 0);
/* Read 2nd byte: Key pressed by user */
b2 = i2c_readbyte(t->bus, 0);
/* Read 3rd byte: Firmware version */
b3 = i2c_readbyte(t->bus, 1);
/* Stopping bus */
i2c_stop(t->bus);
/* ... */

}

Communication between the daemon and irw
takes place via the socket /dev/lircd. This allows a
number of programs to connect to lircd simultane-
ously. The LIRC mouse daemon lircmd is one of
them. As the name suggests, with this you can
achieve the functions of a mouse via a remote con-
trol. The associated configuration file lircmd.conf is
expected too, which like that for lircd should be
placed in /usr/local/etc/. A glance at the already
existing configuration files in directory remotes/
should give an idea of what the file should look like.
A few points on this:
• PROTOCOL IMPS/2 ensures that the IMPS2 proto-

col runs via /dev/lircm. If this directive is omitted,
the Mouse Systems protocol is used.

• ACCELERATE controls the speed with which the
mouse pointer moves.

• ACTIVATE defines the specific key via which the
mouse functionality can be activated

• All MOVE_ instructions assign the directions.
• All BUTTON_ directives assign the mouse buttons
• Two parameters are always specified with ACTI-

VATE, MOVE_, BUTTON_, the first being the
name of the remote control (»*« for all remote
controls), the second is the key abbreviation that
lircd supplies.

• Example: gpm -m /dev/lircm -t msc, for the case
where the Mouse Systems protocol is used.

Once the kernel driver and daemon have processed
the received raw data to the extent that the key
abbreviation can be obtained directly from lircd, it is
time to respond. For example, irexec does precisely
this by starting various programs. As to be expect-
ed, the details as to what is to be started by which
key abbreviation, are determined by a configuration
file. This file is expected to be in $HOME/.lircrc. A
few points on this too:
• The file is split into „begin … end” blocks for

each key abbreviation
• Within these blocks »prog = irexec« must appear

first of all. This allows several programs to be con-
figured via.lircrc. An entry with »prog = xawtv«,
for example, would be ignored by irexec

• »button = BUTTON ABBREVIATION« for the rele-
vant button that is to be responded to

• »config = Program« whatever is to be executed
• »repeat = 0« no response will be made to button

repetition
• With »mode« a different »begin mode – end

mode« block in the configuration file can be acti-
vated

To simplify communication with lircd and for easy
read-in and processing of the file .lircrc, since lirc-
0.6.0 there has been a library (liblirc_client) which is
also used by irexec. Further information regarding
the functional scope and linking of liblirc_client in
standalone programs can be found in doc/ in the
LIRC package.

A program that also uses the liblirc_client and
ought to be of particular interest to TV card owners
is called xawtv. With xawtv remote viewing is possi-
ble both under X and with the frame-buffer device.
Through the support of liblirc_client you can sit
comfortably in the armchair and zip things with the
remote control. For simplicity’s sake xawtv includes
its own .lircrc file with (contrib/dot.lircrc.). The key
abbreviations that are to be found in the configura-
tion file of the Hauppauge remote control are used
there. Thus anyone who has assigned other key
abbreviations needs to adjust them here.

The XMMS plug-in will also probably be found
useful since with this xmms can be operated as con-
veniently as xawtv. LIRC and xmms should already
be installed prior to compiling the plug-in, other-
wise the necessary header files will not be found.
An example .lircrc file is also enclosed and can be
appended to one that already exists (if need be
adapt the key abbreviations to suit your own
remote control). In contrast to xawtv with the xmms
plug-in irexec must run in the background as well.
Use is made of “mode“ in the configuration file and
xmms itself is started only through irexec. This can
be circumvented by commenting out the irexec
entry along with the two lines “begin xmms“ and
“end xmms“. ■

PROJECTREMOTE CONTROL

2 · 2000 LINUX MAGAZINE 73

Info

LIRC home page:
http://mars.wiwi.uni-
halle.de/lirc/

Linux Kernel Module Pro-
gramming Guide:
http://www.fokus.gmd.de/lin-
ux/LDP/lkmpg-1.1.0.html/

Remote Control Tutorial:
http://cgl.bu.edu/GC/shammi/ir/

TSOP17XX data sheets:
http://www.vishay.de/datashe
ets/optoelectronics/photomod-
ules/TSOP17…html

A self-built universal
remote control:
http://www.geocities.com/Sili-
conValley/Sector/3863/uir/inde
x.html

Animax:
http://www.animax.no/

xatw home page:
http://me.in-berlin.de/~krax-
el/xawtv.html

IRman:
http://www.evation.com/

■

Listing 4: Simple example for xmms
Output text each time that 1 is pressed

begin
prog = irexec
button = 1
config = echo "You’ve pressed 1"

end

Start xmms in the background and switch intU
o xmms mode

begin
prog = irexec
button = RADIO
config = xmms &
mode = xmms

end

All "begin ... end" blocks within "begin xmU
ms ... end xmms"
are taken into consideration only if we areU
in mode = xmms.
This makes sense if you intend switching beU
tween a number of
keypad layouts.
Hint: if the mode is given the same name asU
the programme then
this is selected automatically.

begin xmms
begin

prog = xmms
button = play
config = PLAY

end
end xmms

