r FEATURE

rHIGH AVAILABILITY

- RUNNI

In the telecommunications industry computer
systems are required to exceed 99.999% (five
nines) availability. The Motorola Computer Group
is @ major manufacturer of embedded system
platforms for this market and now offers Linux
as one of the operating systems that may be
used. Larry G. Cruz describes the architecture of
this hardware and the changes and additions
that were made to Linux so as to make it into a

high availability operating system.

High Availability Linux

JUST
KEEP O

LARRY G. CRUZ

Fig. 1: A Motorola CPX8216
CompactPCl system

The Motorola Computer Group (MCG) manufactures
a variety of embedded system platforms for the
telecommunications industry. The CPX8000 family of
CompactPCl systems are application ready platforms
that are designed to meet five nines availability. Com-
pactPCl provides the primary bus architecture for
these platforms, but additional hardware and soft-
ware is required to provide a system that can be
deployed in critical telecommunication infrastructure
applications. One of the operating systems offered
for these systems is the Linux operating system.

The CPX8216 systems are Network Equipment
Building System (NEBS) and European Telecom Stan-
dard (ETSI) compliant platforms. They have built-in
redundancy enabling them to be configured and
programmed for Hot Swap and High Availability
environments. Standard features include:

44 LINUX MAGAZINE 2 -2000

Dual 8 slot CompactPCI(r) backplanes (H.110 bus
optional)
e Hot-Swappable CPU and I/O boards
e PowerPC or Pentium Il processors
¢ Up to three 350W Hot-Swappable power supplies
e Three Hot-Swappable fans
¢ Four Hot-Swappable drive bays
e NEBS compliant, Hot-Swappable alarm status dis-
play panel
e Hot Swap Controller providing CompactPCI(r) bus
and slot control compliant with PICMG 2.1 rev
1.0 CompactPCl(r) Hot Swap Specification
The CPX8216 has a dual host architecture (Fig.
2). The two independent CompactPCI(r) bus seg-
ments form redundant system domains that are
cross connected via bridges. In a simple Active
Standby I/0 configuration the bridges are config-

ured such that CPU-A controls all twelve I/0 slots in
the system. If CPU-A were to fail the bridges would
then be configured such that CPU-B would have
control of all twelve I/O slots.

The ability to switch from the active CPU to the
standby CPU is obviously useful in the case where
the CPU hardware or software fails. An additional
benefit is the ability to perform CPU, software and
firmware upgrades without taking the system
down. To do this the CPU, software or firmware is
first upgraded on the standby CPU. When complet-
ed the standby CPU takes control of the I/O bus seg-
ments and becomes the active CPU. The previously
active, and now standby, CPU is then upgraded.

Driven by the appropriate software, the
CPX8216 can be configured and maintained at var-
ied degrees of complexity and granularity ranging
from simple Hot Swap implementations to Highly
Available, “five nines” systems.

Hot Swap and High Availability

Fundamental to the need for Hot Swap and High
Availability is the premise that the ability to add and
remove components from a live system reduces sys-
tem downtime. A system without Hot Swap capabili-
ties must first be shut down and powered off prior to
the addition, removal or replacement of system
boards and components. Systems with Hot Swap
capabilities range in their ability to reduce this down-
time from hours of system unavailability per year to
less than five minutes per year. Predictably, as the
availability of a system increases so, too,does the com-
plexity of the hardware and software of that system.

Although definitions abound for the terms “Hot
Swap” and “High Availability” PICMG has charac-
terised three different levels of Hot Swap capabili-
ties: Basic Hot Swap, Full Hot Swap and High Avail-
ability. Each level builds on the capabilities of the
prior level to increase system availability.

Basic Hot Swap provides the fundamental
capability to add and remove boards from an active
system. The staged (differing length) pins in a Com-
pactPCl(r) connector cause some pins to make con-
nection to the bus before others when inserting a
board. The reverse occurs when a board is
removed. Special circuitry is provided that allows
boards to be inserted and removed from an active
bus without causing signal or DC power glitches.
CompactPCl(r) boards conforming to the PICMG
CompactPCl(r) specification PICMG 2.0 R2.1 are
electrically Hot Swappable.

Systems supporting Basic Hot Swap are fairly
simple in their implementation and require operator
intervention and direction to perform the Hot Swap
activity. The operator must first access the system
console and direct the system to, as gracefully as
possible, stop using or “de-configure” the board to
be removed. Once the operator sees that applica-
tion and operating system software have terminated
their use of the board the operator can instruct the

HIGH AVAILABILITY‘

FEATUREﬂl

Fabp -I—_I

board to disconnect from the bus and power off.
The board can then be removed and replaced. After
this the operator must reverse these steps to com-
plete the replacement of a board into the system.

Full Hot Swap extends the Basic Hot Swap
model with additional hardware and software. If
the operating system can be notified automatically
in advance of a board’s removal or insertion then
the operating system can automatically de-config-
ure or configure the board without requiring opera-
tor direction. This would reduce both the opportu-
nity for mistakes and the amount of time required
to perform the Hot Swap activity.

To provide this capability a microswitch is added
to the lower injector/ejector handle of the Com-
pactPCl(r) board. To remove a board an operator
must first press down on the lower ejector handle.
This action activates the microswitch and causes the
ENUM interrupt to be generated. The operating
system must then field the ENUM interrupt, identify
the board that is about to be removed and graceful-
ly de-configure the board. An LED then lights on
the face of the board to tell the operator that it is
safe to complete the removal of the board. Asa
board is inserted into the bus the microswitch is
activated and the ENUM interrupt is processed. In
this case the operating system must determine the
type of board being inserted and then configure the
board for use. The LED on the face of the board is
then turned off to indicate to the operator that the
board has been accepted into the system.

High Availability systems significantly expand
the scope of the operating system’s involvement in
handling events occurring in the system chassis.
Middleware (user level software outside the O/S ker-
nel) is added to manage the configuration and allo-
cation of system resources. This middleware also
provides an interface to user applications through
published APIs.

Fig. 2: CPX8216 Dual
Host Architecture

2-2000 LINUX MAGAZINE 45

rFEATURE rHIGH AVAILABILITY

Event Manager API

LTHSIEN JITTARTT TR] Ry IFHE AR 1l RICITRT Ry 160 TR AL +——'|_
'EMDriver HA Aware Drivers PClServices ENUMDriver HSCDriver VTERM Driver

Fig. 3 HA-Linux
Block Diagram

In a High Availability (HA) system software can enhancements to the Linux kernel, additional kernel

control the state of chassis components via the
addition of the Hot Swap Controller (HSC). With
this hardware addition automation and fine granu-
larity of status and control are possible. The HSC
developed by Motorola provides CompactPCI(r) bus
and slot control as well as chassis alarm and status
registers and is itself Hot Swappable.

High Availability Linux

In recent months there has been explosive growth in
the use of Linux in commercial applications.
Motorola’s decision to develop High Availability
software for the CPX8000 family of platforms using
Linux was driven by many factors. Not only does
Linux provide a full featured OS with proven reliabil-
ity, but the open source model enables lower cost,
greater control and simplified licensing. Linux also
fitted in well with Motorola’s existing service and
support model for UNIX systems.

"HA-Linux” is the name given to the collection
of Motorola‘s added value extensions and enhance-
ments to Linux that implement High Availability fea-
tures. Motorola‘’s HA-Linux is not “yet another”
new Linux distribution. In fact, one of the design
goals of HA-Linux was to create as portable an
implementation as possible. The CPX8000 HA plat-
forms are available in configurations using both
PowerPC and Intel(r) processors. Today, HA-Linux
runs on two Linux distributions: Red Hat 6.1/6.2 for
Intel processors and a derivative of LinuxPPC for
PowerPC processors.

Fig. 3 presents a high level block diagram of the
HA-Linux components. HA-Linux consists of

46 LINUX MAGAZINE 2 -2000

modules, user level programs, utilities and APIs. A
CPX8000 system with HA-Linux in place is ready for
customer applications to be added to run in a High
Availability environment.

HA-Linux Components

The following is a brief description of the HA-Linux
components. Motorola is open sourcing all compo-
nents covered by the GNU General Public License
(GPL). Additionally, Motorola intends to publish any
component integrated into the kernel including dri-
vers that are not covered by the GPL.

PCl Kernel Services

Motorola has developed a revision of PCl kernel ser-
vices for 2.2 .x versions of the Linux kernel. Since
PCl devices are removed from or inserted into an
HA-Linux system the operating system must be able
to dynamically maintain data structures that repre-
sent the current state of the bus. The 2.2 version of
the Linux kernel does not provide a model for the
dynamic allocation and de-allocation of PCl bus
resources. Motorola’s revision of PCl kernel services
provides this capability through enhancement of the
existing GPL code.

ENUM Driver

The ENUM driver is implemented as a kernel mod-
ule and is responsible for the asynchronous event
notification of Hot Swap activity. The ENUM# inter-
rupt is generated when the lower ejector handle of

a CompactPCl(r) board is pressed down. The inter-
rupt is also generated when a board is inserted into
the bus. The ENUM driver processes this interrupt
and determines the source of the interrupt.

Hot Swap Controller Driver

The Hot Swap Controller driver is implemented as a

kernel module and supplies an interface to the HSC.

The HSC controls all of the system infrastructure

and provides asynchronous event notification of

chassis component state changes. Access to user

level applications is through a published API that

provides these facilities:

e Visual and audible alarms on the chassis alarm
panel can be set or queried for status.

e Individual board slots can be reset, powered off
or on or queried for status.

e Disk drives can be powered off or on.

e Cooling fan speed can be adjusted, powered off
or on.

e Power supplies can be monitored, powered off or
on.

e Bridges can be configured for domain control.

e Chassis environmental conditions can be moni-
tored.

Although the API for the HSC is published, most

user applications will not drive the HSC directly.

Instead, higher level HA-Linux software will interact

with the HSC on behalf of the user application.

HA Aware Drivers and
the EM Driver

HA-aware drivers are either existing drivers that have
been enhanced or new drivers that have been writ-
ten to conform to the HA-Linux “HA Driver Specifi-
cation.” An HA-aware driver adheres to the PCMCIA
specification enabling drivers to cope with the
appearance and disappearance of individual devices.
Drivers may also be enhanced with fault detection
and diagnostic capabilities. If applicable, these dri-
vers might also be configured to perform low level
device failover. For example, the ethernet driver can
be configured such that it views two physical con-
nections as one active and one standby connection.
If the driver detects that the active connection has
failed it can switch activity to the standby connection
prior to notifying the system of the failure and there-
by reducing the possibility of data loss.

The Event Manager driver is implemented as a
kernel module and provides an interface to the
Event Manager for HA aware drivers.

VTERM Driver and Utilities

The VTERM driver and utilities implement a very use-
ful and “nifty” feature in an HA-Linux system.
Through VTERM a virtual terminal interface can be
established between the CPU board and any of the
I/0 boards to interact with the I/0 board’s firmware

HIGH AVAILABILITY 'l

FEATURE_‘i

(BIOS) via the PCl bus. User applications can interact
with, configure and control the firmware of an I/O
processor board. Diagnostics can be run, MAC
addresses can be read, boot options can be config-
ured and network booting can be initiated. In short,
almost anything that can be done via firmware at
the I/0 board’s console port can be done via VTERM.

Event and Alarm Managers

The Event Manager is a user level process that
serves as the brains of an HA-Linux system. The
Event Manager is responsible for the system config-
uration and event management of the system. The
Alarm Manager in conjunction with the Event Man-
ager controls the system LEDs and alarms. The Event
and Alarm Managers are easily configured and
extended by users to meet their specific application
needs.

SNMP

The Simple Network Management Protocol (SNMP)
agent included in HA-Linux is an implementation of
the open source UCD SNMP v3 agent. The agent
supports MIB-2 and UCD agent extensions for
processors, disks, memory, load average, shell com-
mands and error handling. HA-Linux extends the
SNMP agent with a MIB for the Event Manager.

ISCS

The Inter-System Communication Services (ISCS)
process provides a method for data communication
between the two domains in the CPX8000 chassis.
ISCS provides a robust interface between the two
domains with redundant serial connections and a
network interface. ISCS is used by both the Event
Manager and user applications to communicate
between domains. Through published APIs, appli-
cation to application messaging and data transfer
capability is available to all applications. Utility pro-
grams for file transfer, remote program execution
and logging are included in HA-Linux.

System Configuration and
Event Management

The primary purpose and function of HA-Linux is to
provide system configuration and event manage-
ment capabilities within the chassis. The software
components described above work together to
achieve this. There are four major functions of Sys-
tem Configuration and Event Management:

System Setup

e Configure system and application objects at boot
time or on a running system.

e Possibly combine physical devices into logical
devices comprised of redundant sets of physical
devices.

22000 LINUXMAGAZINE 47

| FEATURE

r HIGH AVAILABILITY

|
Info
Motorola Linux website

http://Iwww.motorola.com/com
puter/Linux

Motorola Computer Group
http:/lwww.mcg.mot.com/

Respond to Change

e Automatically reconfigure the system after a failure.

e Take actions specified by subsystems when the
system state changes.

¢ Notify a system administrator or service center of
a failure.

e Execute operator requests to add or remove
objects and/or devices.

e Execute operator requests to re-integrate objects
and/or devices following repair or replacement.

Display System State

e By illuminating lights or activating alarms on the
system alarm panel.

e By illuminating lights or indicators on the object
or device.

e By updating the display of a graphical user interface.

Maintain System History

e Keep a record of system configuration and events
in system or remote logs.

e Update system configuration maintained by the
standby CPU.

HA-Linux implements all of these functions, and

more, relieving the application developer from hav-

ing to manage low level devices within the chassis

and allowing him to focus on the specifics of the

application.

Achieving High Availability

Many aspects of the system come into play in order
to achieve high availability within a chassis. To max-
imise the effectiveness in reducing system down-
time, applications must be aware of and interact
with HA-Linux. The amount of interaction required
is of course dependent on the complexity of the
application and failover models desired.
HA-Linux is built upon a collection of simple text
files. Editable text files exist that:
e describe the configuration of the system;
¢ define objects to be managed,;
e establish rules and policies to be followed when
the state of an object changes;
¢ specify the actions to be taken based on state
changes.

Each of these files is implemented using a simple
scripting language. HA-Linux comes complete with
configuration, definition, rules and action files for
the objects that exist in a CPX8000 chassis. Users
can easily modify, extend or add definitions, rules
and actions for any software or hardware objects of
interest to their application of the system. There is
also an API for the Event Manager that when linked
with applications allows them to interact with the
Event Manager so as to manage configuration, con-
trol, status and event notification.

In addition to tailoring system configuration and
event management, users can easily integrate the
network management of the system via SNMP. All

48 LINUX MAGAZINE 2 -2000

the functions that are available to programs via the
Event Manager API are also available via the Event
Manager MIB.

The Inter-System Communication Services can
be used to send messages between applications run-
ning on the active and standby CPUs. Again, this
facility is provided via simple utility programs or pub-
lished APIs. The frequency, volume and type of data
transmitted is entirely up to the application program.
The ISCS interface can be used to implement soft-
ware upgrade scripts allowing the active CPU to dri-
ve the upgrade process on the standby CPU.

Through a combination of user applications, HA-
Linux, the Linux operating system and the CPX8000
platform high availability is achieved. This is essen-
tial to enable network operators to achieve the relia-
bility, performance and scalability they require to
compete in the telecommunications market.

The Future

Future releases of HA-Linux will focus on advancing
the scalability and availability of CPX8000 systems.
Clustering, availability management, backplane
messaging and network management will be
added. Although HA-Linux systems support ether-
net and ATM, additional communication protocols
will be supported with HA-aware drivers. As the
CPX8000 family of systems grows and the underly-
ing architecture and hardware is enhanced, HA-Lin-
ux will also grow to take advantage of these
changes. The direction will always be toward
achieving higher and higher availability while pro-
viding new features and functions that further
enable the “application readiness” of the platform
for the telecoms industry.

Summary

With HA-Linux it is possible to remove and replace
system components without interrupting the opera-
tion of the system. In fact, with HA-Linux an opera-
tor can pull the active CPU from a CPX8000 system
and observe the system switch to the standby CPU
with minimal or no interruption of system process-
ing. Operating System software, application soft-
ware as well as CPU board firmware can be upgrad-
ed without experiencing any system downtime.
Even the firmware on the active CPU can be
upgraded while Linux is running. HA-Linux provides
the full system configuration, event management
and interfaces required to achieve in excess of
99.999% availability.

Motorola’s implementation of HA-Linux on the
CPX8000 family of CompactPCl systems provides an
application ready five nines platform for the tele-
coms industry. Motorola has developed an open sys-
tem solution that makes application integration
simple and easy. This high availability solution is
proof that Linux is ready for deployment in these
demanding environments.]

