
Software is a funny thing. It is developed by lots of
different people with lots of different ideas and
ways of working. Some like the simple
vim+consoles approach in which they manually edit
and compile source files. Some prefer a more
integrated development system such as KDevelop.
Personally I fall into the latter category, preferring to
have the class view, automatic Makefile handling
and other goodies that KDevelop offers.

Although KDevelop supports the development
of GNOME, Qt and console applications it really
comes into its own with the development of KDE
applications. One feature of KDevelop that has
particular appeal is its graphical dialog box designer.
With the built-in designer you can visually ”draw”
your dialog boxes and the code is then generated
for you.

Although the designer is good, it isn’t great and
it has some flaws including:
• limited selection of widgets – not all widgets and

properties are selectable;
• limited layout management;
• limited support for dialog types (QDialog,

QWizard, QWidget etc.)
Unfortunately these limitations have quite an

impact on the development of KDE applications as
you often need widgets that are not supported, or
you need layout management. As with any software,
there are of course alternatives that provide better
support for designing dialogs. But everything
changed when Troll Tech, the developers of Qt,
released its own dialog creator named Qt Designer.

Qt Designer is not just a dialog box creator. It
can also design widgets, wizards and more. Qt
Designer has advanced layout management support
and supports all Qt widgets. Qt Designer also lets
you change and edit a great many properties for
each widget you use in a dialog and is a very flexible
tool in general.

In this article we are going to show you how to
harness the power of both KDevelop and Qt
Designer to simplify and speed up the development
of your applications. Please be aware that this is not
a tutorial on KDE/Qt programming or using
KDevelop. You should already be familiar with both
of these, although the article will still be useful if you
are only learning KDE development. Also bear in
mind that the example application we will build here

Widget: An element of a
graphical interface, such as a
container window, button or

field for entering text.
Layout management: This

term describes the way in
which widgets are arranged in
a window. In its simplest form,
an element may be placed at a

specific position and given a
specific height and width. But
graphical environments under

Linux allow for the system to
manage the layout of widgets

according to the size and
characteristics of the window

they are displayed in.

■

PROGRAMMING DEVELOPING GRAPHICAL APPLICATIONS

88 LINUX MAGAZINE 3 · 2000

Qt Designer and KDevelop

DESIGNER
SOFTWARE

JONO BACON

Today, most computer users want graphical applications.

But developing graphical applications can be hard

work for the programmer. There are, however,

tools that can make the job easier. If you want

to develop applications using Qt, the library

used by the KDE project, one of the best

tools to use is Qt Designer. KDE developer

Jono Bacon demonstrates how to use it.

088kdegui .qxd 20.10.2000 13:07 Uhr Seite 88

is not the most extensive application and is intended
simply to illustrate the concepts being described.

Getting going

To get us started doing something useful with Qt
Designer we are going to build a simple program
that takes a name, email address and a witty
comment and generates a signature for an email. To
create the application we will need to follow the
steps below:
• Design the application in Qt Designer;
• Create the slots and connections in Qt Designer;
• Generate the source code using Qt Designer;
• Embed the generated code in KDevelop and write

the functional code.

Designing the program

To design the program we first need a visual idea of
the design. To make this easier I have created the
design for you: you can see a screenshot of it in
Figure 1.

As you can see, we have a window with a
number of different items (or widgets) on it,
designed so that the user puts the right information
in the right boxes. To create this design we need to
first fire up Qt Designer. You can do this by either
clicking on Qt Designer from the Development
option in the application starter or by loading the
program from the command-line from $QTDIR/bin.

($QTDIR is, of course, the home directory of your Qt
files.) When Qt Designer has loaded, you will be
presented with a screen similar to that in Figure 2.

Qt Designer’s interface is essentially split into
three areas. At the top under the menu bar is the
widget toolbar section. Here you can see a number
of icons representing the different types of widgets

PROGRAMMINGDEVELOPING GRAPHICAL APPLICATIONS

3 · 2000 LINUX MAGAZINE 89

How to get Qt Designer
The Qt Designer package itself comes with version 2.2.1 of Qt. It is important that you get at
least this version or Qt Designer will not be included. There are several ways to get hold of
Qt. The most common method is explained here.

Downloading from Troll Tech

You can download the file from ftp://ftp.troll.no/qt/source. In that directory you will find a
variety of versions of Qt available. Make sure you get the right version for your system.
Unzip and extract the package when you have downloaded it. You can then compile it.

Compiling Qt

To compile Qt you must first set the QTDIR environment variable. This should point to the
directory into which you installed Qt. For example, if you installed it to /build/qt you can set
this variable in bash by typing:

export QTDIR=/build/qt

To make life easier you should edit .bash_profile so this is set automatically when you log in.
To compile you should then issue these commands in the following order:

./configure -sm -gif -system-jpeg -no-opengl
make

Note: make install is not needed.

Qt Designer will be located in the bin directory of your Qt installation directory. You will
need to add this directory to your PATH so uic can be found when using Qt Designer.

Fig. 1: The program we
will create in the article

088kdegui .qxd 20.10.2000 13:07 Uhr Seite 89

that can be used in your program. To the left of the
screen you can see the Property Editor. This is where
your widgets can be fine tuned to behave how you
want them to. To the right of this is the Object
Hierarchy. This box shows a parent/child relationship
view of the various widgets in your program. The
space in the middle of the screen is where you will
graphically design your program.

Creating the framework

Let’s start by developing the framework that our
program will sit in. This can be done quickly and
easily in KDevelop by using the Application Wizard
to create a KDE2 Mini application. (There was an
article about using KDevelop in Linux Magazine
November 2000.) Call the application SigCreate.
Once the Application Wizard has created your
application, compile it to ensure that everything is
fine. We now have our framework and are ready to
start developing our program.

We can now start creating the program
interface so that it looks similar to that of Figure 1.
First, switch to Qt Designer and select File->New. A
box will pop up allowing you to select a variety of
program templates. The default template is a
dialog, and that is fine for our program, so click on
the OK button.

A blank window with grid points in it will now
pop up. This is your program’s window, within
which you will design your user interface. You will
also see that the Property Editor has been filled with
details about the box you have just created. At the
top is the name of the box. This will form the class
name of the dialog so you should name it
something useful. Name it SigCreateDlg for now. To
do this simply type ”SigCreateDlg” into the text box
to the right of the name property. This is how
properties are changed: select the property, then
change its’ setting on the right.

Adding widgets

To start we will insert the text at the top of the
program window which can be seen in Figure 1.
This text tells the user how to operate the program.
This type of widget is called a Label and you can put
one on your program like this:
• Select the ‘A’ icon or Tools->Display->TextLabel

from the menu;
• The cursor will become a crosshair over your

program. Draw a box for the label, just as you
would in a paint program, and you will see that
the label is created with some dummy text in it;

• To change this text, double click on the label in
the box and type in the text;

• Finally, resize the widget using the handles so it is
the correct size and at the top of the box. Try to
centre the label by moving it with the mouse. This
is just a temporary measure. Later on we will look
at a more elegant layout management technique.

You follow pretty much the same procedure for
embedding any type of widget that is supported by
Qt Designer: select it, draw it and finally change its’
properties and size.

An interesting concept in Qt Designer is that
widgets can act as containers for other widgets.
This will be demonstrated in our next task, which is
to create the input fields inside the frame. You can
see that in Figure 1 we have a bunch of labels and
text boxes inside a frame. This frame is called a
Group Box and acts as a container for the labels and
text boxes inside it. Let’s first create the frame by
selecting the Group Box icon or Tools->Containers-
>GroupBox from the menu. You can drag the
mouse to create box again. In the Property Editor
you can change the title property to alter the text in
the frame. You may also notice a + symbol in this
entry in the Property Editor. This indicates that the
property has subproperties that can also be
changed.

Once you have created the frame, create three
more labels as before but when you draw them,
draw them inside the Group Box frame. You can
then see in the Object Hierarchy to the right that
the labels have become children of the Group Box
frame. Once you have done this you can then
create the text boxes. The name of this type of
widget is a Line Edit. (There is also a Multi Line Edit
that we will use later.) To create a Line Edit select
the Line Edit icon or use Tools->Input->LineEdit
from the menu.

Up to now we have not named any of the
widgets that are being placed in our program. We
have set the text of the labels and the frame, but we
have not set the internal program names for them
which are set via the the name property at the top.
The reason for this is that although it is a good idea
to give all widgets a name, it is only really important
to set the name of widgets that you are actually
going to deal with in your program. In our program
we need to manipulate the data from the two Line

PROGRAMMING DEVELOPING GRAPHICAL APPLICATIONS

90 LINUX MAGAZINE 3 · 2000

Figure 2: Qt Designer

088kdegui .qxd 20.10.2000 13:07 Uhr Seite 90

Edit boxes so we can generate our signature. As we
need to read the text from these boxes we should
give them a name using the name property. To do
this set the name of the top box to ”nameBox” and
the bottom box to ”mailBox”. You will see later
how these internal names are used.

We can now begin adding the other widgets in
the same manner. Most of the widgets simply
require you to draw them on the form. One widget
that does need a little more explanation is the
Combo Box widget that will hold the comment for
the user to select. Start by creating it like any other
widget, then when it is displayed double-click on it.
You will then be presented with a box into which
you can add the contents of the combo box.

Click on the ‘New Item’ button. A text box will
appear. Into it you can type a comment. When you
have typed the first comment you can click ‘New
Item’ again and start entering the second comment.
Repeat this for all the other comments. When you
are finished, click the OK button. After you have
entered the comments you need to name this
widget using the ‘name’ property in the Property
Editor. This is because we need to access the
comments of the box in our program. Call the
Combo Box ”commBox”.

You can now go on and add the other widgets.
You will need to add a Label (the text above the
large space), a Multi Line Edit (the white space) and
two buttons (at the bottom). Name the Multi Line
Edit as ”sigBox”. The other widgets do not need to
be named, although you can name them if you
want.

Getting spaced out

Now all your widgets are in place we can have a
quick preview of the form by selecting Preview-
>Preview Form from the menu. Try to resize the
window and you will notice that the widgets do not
adjust appropriately. To achieve this we need to use
a feature of Qt Designer called Spacers. Spacers can
be thought of as springs which push the widgets on
each side apart. We can use these virtual springs to
design our dialogs so that they resize effectively
when the user resizes the box.

The use of spacers and layout management is a
skill that is developed through trial and error. The best
idea is just to play with Qt Designer and look at other
people’s good and bad efforts. The key rule to
remember when dealing with spacers is that you work
horizontally first and then vertically. Now you have all
your widgets set out, let’s get the spacers created.

The first thing we will do is to make the text at
the top of the box centered. To do this we will need
a spacer at either side of the text. To create a spacer
you can click on the spring icon or select Layout-
>Add Spacer from the menu. Either way you will be
presented with a menu from which you can choose
either a Horizontal or a Vertical spacer. Choose
Horizontal from the menu as we need to center the
text horizontally. Next you must click on the form to
set the location of the spacer. Click the space to the
left of the text and the blue spacer will appear.
Repeat this process for the spacer on the right. You
can see what this should look like in Figure 3.

Now we have put the spacers in we need to tell
Qt Designer how to look after the layout
management. To do this we can either use Vertical,
Horizontal or Grid management. As we have three
objects in a row (the two spacers and our label) we
can use Horizontal management. To do this we
need to select the left spacer with the mouse, hold
down Shift and then select the label and the right
spacer so all three are selected. We can then click
on the Horizontal Layout icon which is three blocks
next to each other, or use Layout->Lay out
Horizontally from the menu. You will then see a
resizable red line around the three objects to
indicate that their layout is being managed.

We can now repeat this procedure for the the
three labels inside the group box (we don’t need
spacers between each label), this time using vertical
layout management (not spacers). You can also use
vertical management for two text boxes and the
combo box. The reason why we are using vertical
management for the labels is because we want
them to be aligned as they currently are, and
spacers can distort objects that need to be aligned
in a specific way. Vertical management is also used
on the text boxes and combo box as they are
equally sized.

PROGRAMMINGDEVELOPING GRAPHICAL APPLICATIONS

3 · 2000 LINUX MAGAZINE 91

[left]
Figure 3: Using spacers
in our design

[right]
The completed layout
management

088kdegui .qxd 20.10.2000 13:07 Uhr Seite 91

The text above the multi line edit needs a spacer
to the right and horizontal management, and the
buttons at the bottom need a spacer to the left and
horizontal management. After all this your form will
contain a number of red boxes. To finish the layout
we need to let the form look after the laid-out
boxes. This is a simple matter of right clicking the
form and selecting ”Lay out in a Grid” from the
menu. The final design with layout lines should
resemble something similar to Figure 4.

Slotting things into place

Now the widgets are implemented and the layout is
arranged the final thing we need to do in the design
stage of the form is to create the signal/slot
connections. To do this manually requires coding a
connect() function, but Qt Designer provides a simple
yet effective solution. Before we look at how to create
the connections in Qt Designer, we must explain how
Qt Designer handles slots in your programs.

The whole idea of Qt Designer is that you can
visually create a dialog box, Qt Designer will
generate the code and you will not need to modify
that code at all. This is all fine and dandy until you
want to create your own slot: to do this you would
need to edit the code to create the functionality of
your slot. This obviously contradicts the idea of not
editing the generated code, so a solution is needed.

Qt Designer solves this problem with a nifty bit
of coding. It does it using Virtual Methods. If you
are unsure what virtual methods are, I would
recommend picking up a good C++ book and
reading up on virtuals. What you need to do, very
basically, is to create a subclass of the dialog’s class
and in it create a slot of the same name. When you
then create an object of this subclass the right slot
will be used. In many ways this is a good thing to do
as it keeps the implementation separate from the
interface which is at the heart of good C++ coding.

To create the signal/slot connections we need to
use the connecting tool. To do this either select the
icon (it looks like a red arrow going into a blue
square) or select Tools->Connect Signals/Slots from
the menu. To create the connection click on the
widget that is going to be dealing with the slot,
drag the line off the form and release the mouse
button.

Let’s deal first with the Create! button. Click on
the button with the crosshair and drag the line off
the form completely. When you have released the
button you will see the connections tool shown in
Figure 5. What we want to do is to create a slot that
will create our signature when the user clicks on the
button. To do this we first need to create the slot,
and then do the connection.

To create the slot we need to click on the ”Edit
Slots” button. You will see the slot creation
boxshown in Figure 6 appear. Now click on the ‘New
Slot’ button and a slot will appear in the box. You can
now rename it and set its access specifier. For our
project, set the name to slotCreateSig() and leave the
access specifier as public. When you click on OK you
will be returned to the connections box and you will
see your new slot in the Slots section of the box.

To make a connection you simply select the
appropriate signal (which is clicked() in our case)
and then select the slot (which is our new slot
slotCreateSig()). When you have selected both
signal and slot you will see the connection made at
the bottom of the screen. After you are finished
click OK. You can repeat this procedure for the
Cancel button by using the clicked() signal and the
reject() slot.

Generating the source

Now we have created the box, widgets, layout
managers and connections, we can finally generate
the source code for your dialog. To do this we will
be using a special command line tool called uic that
is included with Qt Designer. The function of uic is

PROGRAMMING DEVELOPING GRAPHICAL APPLICATIONS

92 LINUX MAGAZINE 3 · 2000

[top]
Figure 5: Making

the connection

[above]
Figure 6: Making a slot

Signals and slots: Signals
and slots are the mechanism

used by a program to
communicate with the widgets

that form its graphical
interface.

■

088kdegui .qxd 20.10.2000 13:08 Uhr Seite 92

to take the saved file that Qt Designer creates when
you save your designed dialog (which is a file full of
special XML code) and convert it to the C++ code
that the compiler understands.

The first thing to do is to copy the Qt Designer
file to your projects directory if you haven’t done so
already. The file needs to be in the same directory as
the other project source code (in our example
(~/sigcreate/sigcreate/). You can then use uic to
generate the header. We will assume that your Qt
Designer file is called sigcreatedlg.ui:

uic -o sigcreatedlg.h sigcreatedlg.ui

To create the file with the implementation code in it
we use the following command:

uic -i sigcreatedlg.h -o sigcreatedlg.cpp siU
gcreatedlg.ui

Now that the code for the dialog has been
generated we can add it into our KDevelop project.
Fire up KDevelop if it is not already open and select
Project/Add existing file(s) from the menu. You can
then import the .h and .cpp files that you just
generated into the project. When these have been
imported, compile the project to make sure
everything worked OK by hitting F9. If no errors are
reported, everything worked fine.

The next step is to adjust the class that
KDevelop generated for you to inherit the new
dialog class. To do this add:

#include "sigcreatedlg.h"

at the top of the sigcreate.h file, and add ”: public
SigCreateDlg” to the end of ”class SigCreate”.

Next we need to add some other include files to
the various files so that the new dialog class is
loaded correctly. You will need to add:

#include <qmultilinedit.h>
#include <qlineedit.h>
#include <qcombobox.h>

We can then create the slot in our subclass by right
clicking on SigCreate in the class view and selecting
”Add member function”. In the box create a slot
called slotCreateSig() and make sure it is public. In
the generated slot we can then actually write the
code that generates the signature:

this->sigBox->insertLine("\n—-", 1);
this->sigBox->insertLine(this->nameBox->texU
t(), 2);
this->sigBox->insertLine(this->mailBox->texU
t(), 3);
this->sigBox->insertLine(this->commBox->currU
entText(), 4);

Finally ensure that all references to QWidget are
removed from the SigCreate class declarations. This
is because our dialog uses QDialog and the
KDevelop-generated projects use QWidget. The first
line of the SigCreate class should be:

class SigCreate : public SigCreateDlg

and the constructor should be:

SigCreate::SigCreate()

in the sigcreate.cpp file. Yhe class declaration of the
constructor should be:

SigCreate();

Once all of these steps have been completed you
can compile and run the program. If you had any
trouble understanding the changes that you made
to the code, we would recommend reading up on
KDE and C++ programming. Unfortunately there
isn’t the space to fully explain the changes just
made, bearing in mind that the focus of the article
has been on showing how Qt Designer can help
your program development.

This article has provided a simple walkthrough
on getting started with Qt Designer. Although we
have covered the main elements of Qt Designer,
there are many more concepts and techniques that
can be learned. It is well worth taking a look at
some of the things listed in the Info box to see
where you can get more information on getting the
best out of Qt Designer and KDevelop.

With KDE becoming increasingly popular with
home users, business users and enthusiasts, the
scope for KDE development is getting more and
more exciting. Taken together with the rapid
development and maintenance of KDE itself and the
increased productivity that can be achieved using
development tools such as Qt Designer and
KDevelop and you have a lot of opportunities
available. Good luck, and let me know how you get
on! If you have an IRC client go to
irc.openprojects.net and join #kde. My nickname is
[vmlinuz]. Come and chat to me if you have any
problems. If I am not there, just ask someone in the
channel when I will be on and I will try to help as
best I can. ■

PROGRAMMINGDEVELOPING GRAPHICAL APPLICATIONS

3 · 2000 LINUX MAGAZINE 93

Getting the example source code
If you would like to download the source
code from the example project today you
can get it from my web site at:
http://www.jonobacon.co.uk/writing/qtd
estut/index.html . The file is called
sigcreate.tar.gz. Once you have
downloaded the code, you can unzip it
by typing:

gunzip sigcreate.tar.gz

You can then unpack the code with:

tar xvf sigcreate.tar

The code will then be extracted into a
directory. In there will be the KDevelop
file that you can load to play with the
code.

Info

KDE home page
http://www.kde.org/
Troll tech
http://www.troll.no/
KDE Developers’ site
http://developer.kde.org/
KDevelop home page
http://www.kdevelop.org/
KDE mailing list info
http://www.kde.org/contact.html
KDE mailing list archives
http://lists.kde.org/

■

088kdegui .qxd 20.10.2000 13:08 Uhr Seite 93

