
WINDOWS EMULATIONWINE

i386: Designation of the
processor architecture
developed by the chip
manufacturer Intel. Among
Intel 386-compatible
processors are Intel’s 80386,
80486, 80586 (Pentium), 80686
(Pentium II) processors, but
also processors from other CPU
manufacturers such as AMD’s
Athlon or VIA’s Cyrix III. The
i386 architecture dominates
the domain of the desktop
computer. When i386-
compatible computers are
mentioned, this often also
means PCs or IBM-compatible
computers.

■

3 · 2000 LINUX MAGAZINE 81

Windows under Linux

FULL BODIED
AND

MATURING
NICELY

PETER GANTEN

Thanks to the Wine project it is possible to run
Windows programs under Linux without a need to
pay money to Microsoft. The snag is, so far not all
Windows programs will run. But the developers of
Wine have made enormous progress and the
number of Windows programs that can be used
under Linux with Wine is increasing all the time. In
this article you’ll find out what Wine really is, how it
works and how you can install Wine on your system
in order to use Windows programs.

EXE files?

The fact that any i386-compatible processor can
execute Windows programs doesn’t mean that such
programs will automatically run under Linux on
Intel. Something more is needed so that Windows
programs can be loaded from the hard drive into
working memory and then executed. This task is
performed by the program loader. When you start
Windows programs under Windows (perhaps by
selecting a program in the Start menu) this function
is carried out by the Windows operating system.

Linux has similar functionality by which native
Linux programs can be loaded when, for example,
you call up an application in the KDE menu, from the
shell or using the GNOME panel. If a user tries to start
a program the operating system first checks whether
the corresponding program file is on the hard disk

and in the correct file format. Just as Netscape cannot
show StarOffice files, Linux cannot simply load
Windows programs. If it appears that the file to be
executed has an unknown format, the operating
system interrupts and emits an error message.
Therefore, in order to start Windows programs under
Linux, a special Windows program loader is required.

API differences

Then there is another problem: each operating
system makes available certain functions to be used
by programs that run under it in order to open files,

Fig. 1: Handy for the development of web pages. The
two rivals, Netscape and Internet Explorer side by side
displaying the homepage of one of the sister of Linux
Magazine. Wine makes it possible

Imagine if Windows programs could be used on any

Linux system. Imagine too, that this could be achieved without

the need for a cumbersome emulator or a Windows operating

system software license. Well, with Wine, it’s possible.

081wine .qxd 23.10.2000 16:50 Uhr Seite 81

WINDOWS EMULATION WINE

display things on the screen, receive data from the
Internet and so on. These interfaces are referred to
as the API of the operating system. APIs, and the
way in which they are used, differ considerably
between Windows and Linux. The way APIs are
used under Windows can best be explained by
means of an example.

In order to open or create a file the API
CreateFile() is used. This is a function located in a
program library. A Windows program that uses
this function has to load the corresponding program
library (in this case, the library KERNEL32.DLL). In
this way the function call of the program is linked
with the function in the library. When the function
CreateFile() is called up, control is handed over to
the library. Depending on which version of
Windows (NT or 95/98) is involved, some very
different functions can be used by the library in
order to execute the required operation (i.e. the
opening or creation of a file).

If a Windows program was loaded into memory
under Linux and then executed, it would almost
certainly fail. This would be because functions such
as CreateFile() are not available. The Linux kernel
provides a similar function, in this case one known
as open(), but it is called up in a completely different
way. In the realm of computer programs, similar is
not good enough.

How can this problem be solved? You may have
already guessed. The necessary APIs have to be

reproduced under Linux. They can then be linked
with the program to be executed, just as occurs
under Windows. If, for example, the program
running under Linux invokes the Windows
CreateFile() API, the library is called, and calls in turn
the corresponding Linux system calls. Any result
returned by the Linux call is transformed if necessary
into the form expected by the Windows program.

This perhaps seems complicated, but in practice
it doesn’t have any disadvantages in comparison
with the ”real” Windows. To stay with the example,
under DOS-based Windows versions such as
Windows 95/98, CreateFile() under certain
conditions calls DOS routines in order to actually
open a file. Under Windows NT or Windows 2000
the corresponding NT API (in this instance
NtCreateFile()) is called up from CreateFile(). Even
under the ”real” Windows, more and more layers
have to be run through. Exactly the same happens
under Linux. In fact, where Linux performs a
function more efficiently than Windows, a
Windows program running under Linux may,
despite the overhead of Wine, still execute more
efficiently than under Windows.

Safer than the original

So what precisely does Wine contain? For a start, it
has a program loader for Windows programs. With
this, 32-bit and 16-bit Windows programs (and also
DOS programs) can be loaded into the working
memory and executed. This is only a small (if very
important) part of its functionality, however. Most
of Wine consists of the program code which makes
available the APIs that DOS and Windows programs
expect to find. These are located, as under
Windows, in special libraries, which are linked by
the loader or at run time with the Windows
program to be executed.

Wine is an ordinary Linux program from the
point of view of the Linux kernel. It doesn’t even
require special rights to be executed. Windows
programs can thus be more safely executed under
Wine than for example under Windows 98, where
each program has full access rights to the whole
computer and all files.

The acronym Wine, by the way, stands for ”Wine
Is Not an Emulator”. This is intended to point out that
Wine doesn’t emulate a Windows computer. Instead,
Wine executes Windows programs directly, precisely
as happens under Windows. Nevertheless Wine does
also mean WINdows Emulator, because the Windows
APIs it provides do not contain the same code as the
”real” APIs written by Microsoft. Wine could be said
to emulate Windows APIs. However, the word re-
implementation would perhaps be more appropriate.

Before getting started on the installation and
configuration of Wine, one more word about the
current state of its development. The project is at
present still in the alpha stage, i.e. in the middle of
development. Many Windows programs do in fact

API: Application Programmer’s Interface. This refers to the interfaces of an
operating system, a system component or a program library which can be used by

other programs.
Program library: This is a file containing program code which can be executed by

the processor. It is not in itself a complete program. In general, program libraries lack
the so-called main() function, which is called up by the operating system in order to
start a program. The code in program libraries can however be used by executable

programs. A program library can for example provide functions to display windows
on the screen. Programs that use this library do not need to contain the

corresponding code themselves, which saves memory space. This also ensures a
uniform appearance for all windows of programs which use the library. Program

libraries under Windows often have the filename suffix .DLL (Dynamic Link Library).
The equivalent under Unix/Linux have names that end in .so (shared object).

■

82 LINUX MAGAZINE 3 · 2000

Fig. 2: Windows
programs under

Wine and Windows
NT in comparison

081wine .qxd 23.10.2000 16:50 Uhr Seite 82

WINDOWS EMULATIONWINE

already run very stably with Wine. Unfortunately,
many others still don’t run at all. Because Wine is still
being worked on very intensively, it could also happen
that a program which functioned well with one
version of Wine no longer runs with a more recent
version. In such cases it is a good idea to send a bug
report to the Wine newsgroup on the Internet and
wait for the next version of the program package.

Installation

Almost all Linux distributions now include Wine
packages which can be installed via the distribution
package management program. Due to the rapid
development of Wine, however, these packages are
already obsolete by the time the distribution comes
out. So it can pay to download a current Wine
package from the Internet and install this.

If you do this, you have the option of either
installing a binary package in RPM or Debian format,
or of using the Wine source code and compiling this
on your own system. This sounds more complicated
than it really is. Compilation on your own computer
has the advantage that the Wine program thus
created is precisely tailored to the software of your
own computer. When this happens a check is made
first as to which components are present in the
system. Wine can then include properties that use
these components. So for example the OpenGL
components of Wine only function when an
OpenGL library with specific properties is on the
system. If you are using a binary package containing
a version of Wine which has been compiled to
support a specific OpenGL version, but the requisite
OpenGL library has not been installed on your
system, the result may be that Wine will not run.
Conversely, you cannot use the OpenGL
functionality unless your version of Wine has been
compiled for use by OpenGL, even if an OpenGL
library is present in your system. In order to use the
latest version of Wine it is recommended that you
take a source code package and compile it yourself.

Software requirements

In order to compile Wine and then use it certain
programs and files must be installed on the system.
These files are all an integral part of modern
distributions, but this doesn’t necessarily mean they
are currently installed. To prevent any problems
arising during compilation you should check whether
the following components are already on your system:
• Linux kernel version 2.2.x. Wine also functions

with older kernels (version 2.0.x.) However, there
can be problems with these kernels when 32-bit
programs with several threads are executed.

• The GNU C run time library. The recommended
version here is 2.1. You can also use Wine with the
older version 2.0. It is not advisable to use the
now-obsolete C library libc5. Apart from the actual
library, which is installed on every Linux system,

you also need the development files for it. These
files are included under Debian 2.2 in the package
libc6-dev and under Suse 7.0 in the package libc
(Series d). Also, under Suse the header files of the
kernel have to be installed as well, and these are in
the linclude package, Series d.

• Wine normally uses the X Window system to
display windows on the screen, so X has to be
installed. You will also need the X developer files
(Debian: xlib6g-dev package, Suse: xdevel
package, Series x)

• The X Pixmap library (libxpm) will also be
required. Under Debian you will have to install
the packages xpm4g and xpm4g-dev. Under Suse
the corresponding packages are included in the
packages shlibs and xdevel.

• In order for Wine to be compiled, you will of
course need a compiler. The minimum
requirement in this case is the GNU C Compiler,
version 2.7.2. The latest version, 2.95 is
recommended. You can find these compilers both
under Debian, Suse and doubtless most other
distributions in the gcc package.

• Plus, you’ll need a few ancillary tools such as
make, bison and flex, which are found under
Debian and Suse in packages with the
corresponding names.

• Wine can optionally use a few other libraries.
These primarily include the ncurses library
(Debian: libncurses5 and libncurses5-dev
packages. Suse: ncurses, Series a) and OpenGL
libraries. You’ll find developer files for OpenGL
under Debian in the package mesag-dev and
under Suse in the package mesadev (Series x3d).
Please note that you will also need either an
OpenGL graphics card and an X-Server with
OpenGL support for your card or the (slow)
OpenGL software implementation Mesa (Debian:
mesag3. Suse: mesa and mesasoft, Series x3d).

Fig. 3: Still room for improvement:
Explorer from the German version of
Windows 95 in the window

3 · 2000 LINUX MAGAZINE 83

OpenGL: OpenGL is a
collection of elementary
graphics functions which,
unlike other graphics libraries
(e.g. Direct3D under Microsoft
Windows) has the enormous
advantage of being not only
hardware-independent, but
also suitable for any platform
(and also for any operating
system!) You can find out more
at http://www.opengl. org/.

■

081wine .qxd 23.10.2000 16:51 Uhr Seite 83

WINDOWS EMULATION WINE

Creating and installing the
source code
The current Wine source code can be downloaded
from the Internet from one of the following addresses:
• ftp://metalab.unc.edu/pub/Linux/ALPHA/wine/
• ftp://ftp.infomagic.com/pub/mirrors/linux/sunsite

/ALPHA/wine/development/
• http://metalab.unc.edu/pub/Linux/ALPHA/wine/

development/.
You will find compressed tar archives in directories
with names consisting of the designation Wine-,
the date on which the respective version was
published and the ending .tar.gz. Thus the file
Wine-20000821.tar.gz for example contains the
Wine source code for the version of 21 August
2000. Normally you should use the latest
applicable version.

Once you have downloaded the tar archive and
stored it in your home directory you can unpack it
with the following command:

$ tar -xvzf Wine-20000821.tar.gz

You must obviously adjust the designation of the
file name (in this case, Wine-20000821.tar.gz), if
you are using another version.

Compilation and installation of
Wine
As soon as the archive has been unpacked, the
source code can be compiled and Wine can then
be installed. To do this first change to the
directory in which Wine was unpacked. The
name of this directory is made up from the
character string wine- and the date of the Wine
version, so for example it could be called wine-
20000821.

$ cd wine-20000821

Then enter this command in order to configure the
source code for your system:

$./configure

All being well, after a series of messages, the
following text will appear:

Configure finished. Do ‘make depend && makU
e’ to compile Wine.

Should this not be the case it is probably due the fact
that certain files have not been found. A
corresponding error message should have been
issued. You will have to reinstall the missing package
and try again. When all is well you can continue
following the instructions and enter this command:

$ make depend && make

Tip: if you have little space free on your hard disk
and wish to use Wine but not to debug it, you can
omit the debug information in the binary files
created during compilation. In that case you should
use this command to compile the code:

$ make depend && make CFLAGS=-O2

Now the program can be installed so that it can be
used by all users of the system. This must be carried
out with the rights of the administrator, root. If
necessary acquire these rights by typing:

$ su

and entering the root password. Then install the
newly-compiled Wine using:

make install

If you don’t wish to make Wine available for the
whole system you can bypass this step.

Configuration

Configuring Wine is relatively time-consuming in
comparison with other software packages. This is
mainly due to the fact that Windows programs
expect a certain infrastructure, which of course is
already in place on a Windows system. Under Linux,
however, it must first be created.

For example, configuration data and other
information is stored under Windows in a system file
called the Registry, which of course has to be made
available by Wine. There is also a considerable
difference between Unix/Linux and Windows in that
under Windows, drive letters are used to designate
different storage devices. If a Windows program wants
to open, for example, the file C:\My Documents/

Letter.doc, Wine has to convert this filename into a
valid Linux filename and open the appropriate file. To
do this, a configuration file is used in which, among
other things, Windows drive letters are assigned to
directories under Linux. So for example the C: drive
could be assigned to a directory called /c so that the file
/c/My Documents/Letter.doc will be opened by
accessing C:\My Documents\Letter.doc.

There are basically two different ways of
configuring Wine: with and without an existing
Windows installation. If Windows is installed on your
computer (for example in a dual-boot configuration,
where the Windows partition can be mounted under

Fig. 5: Wine provides a
Windows registry under

Linux, which can of
course be edited using

Windows tools

84 LINUX MAGAZINE 3 · 2000

Debug: The process of
debugging: removing bugs
(not unwanted insects, but

faults) from the program code.

■

081wine .qxd 23.10.2000 16:51 Uhr Seite 84

WINDOWS EMULATIONWINE

Linux), Wine can share this installation. Then all settings
and files from this existing Windows installation are
taken over. This has the advantage that programs
installed under Windows can be executed under Linux
with Wine without having to be reinstalled. Wine can
then make use of a whole range of libraries in the
Windows installation. Since at present the number of
Windows libraries emulated (or re-implemented) under
Wine is still very much a subset of those commonly
used, many Windows programs run better under Wine
if the ”proper” libraries are available.

There is no risk of Wine changing Windows
configuration files. Changes to the registry or to INI
files which are made by the programs running under
Wine are stored separately in the home directory of
the user concerned and not written back to the
Windows installation. This can lead to
inconsistencies if you install programs with Wine and
files in the Windows installation are overwritten.

Of course, the partition containing the Windows
installation has to be available under Linux so that Wine
can access it. If this is not yet the case on your system
you should make a corresponding entry in the file
/etc/fstab. Assuming that your Windows installation is
located on the first primary partition of your first IDE
hard disk and it is to be mounted on the /c directory, the
/c directory should be created first, using:

mkdir /c

Then the following line should be entered in the file
/etc/fstab :

/dev/hda1 /c vfat defaults

If you wish to exclude completely the possibility that
Wine might change anything on your Windows
installation you can also mount the partition as
read-only:

/dev/hda1 /c vfat defaults,ro

Now the partition still has to be actually mounted.
This can be done with this command:

mount /c

You can, of course, also use Wine without any existing
Windows installation. You must then define at least one
directory, which should be assigned to a drive letter, and
create this directory if it doesn’t yet exist. Also, a few
sub-directories must be created in the directory – these
are already in place in a Windows installation – together
with a Registry. The simplest way to perform this step,
together with the creation of a Wine configuration file,
is using the script wineinstall, which can be found in the
tools subdirectory of the source code directory.

For all seasons: wineinstall

Wineinstall can be used to configure Wine for use
with an existing Windows installation. The script
can tell whether one exists by checking whether a
Windows partition is mounted in the file /etc/fstab.
So if you have mounted a Windows installation but

don’t wish it to be used by Wine it is advisable to
comment out the entry before you run wineinstall.
You can then later remove the comment.

Depending on whether you run wineinstall as
root (system administrator) or as an ordinary user,
the script will create a configuration which is valid
for the whole system or one that is merely valid for
the user who is running it. In the case of a
configuration which is valid for the whole system
the configuration data is stored in the /usr/local/etc
directory. The most important file in this directory is
the wine.conf file. This is the central configuration
file for Wine. In the case of a user configuration the
configuration file is written in the home directory
(~) of the user who is running it, where it bears the
name .winerc (The dot before the file name, by the
way, means that this is a ”hidden” file which is only
displayed by ls when the additional parameter -a is
provided to it.) If both files exist, Wine will use the
file in the home directory of the user who is running
it. So you should enter the following command to
configure Wine, either as user or as administrator:

tools/wineinstall

A check will then be made as to whether Wine has
been compiled and installed. If not, the required steps
will be taken. After that there will be a check as to
whether an existing Windows installation is in place. If
so, the required configuration file will be created. If
not, you will be asked which directory should
correspond to the C: drive. This directory will be
created if it doesn’t yet exist. The registry will also be
created. After that a configuration file will be written.

The big moment

Now you can try to execute a simple Windows
program in order to test Wine. If you are using an
existing Windows installation try starting the
program notepad.exe. If not, you can start with a
test by going straight into the installation of a
program, as described further on.

To start Windows programs with Wine from the
command line, the name of the Windows program
to be run must be specified as an argument to the
wine program. So to run notepad.exe the following
command should be entered:

$ wine notepad.exe

You can also provide a full path to the program to
be run. This is necessary if it cannot be found in the
search path for Windows programs, which is
specified in the configuration file. When you do this
you can specify either the Unix path name or the
Windows path name, depending on the
assignments in the configuration file. So if the /c
directory is assigned to the C: drive, both of the
following commands would have the same effect:

$ wine /c/windows/notepad.exe
$ wine c:\\windows\\notepad.exe

Fig. 6:
Another possibility: creating a presentation
via Wine with PowerPoint

3 · 2000 LINUX MAGAZINE 85

Fig. 5:
Handy for viewing Word documents under
Linux: the free Word Viewer from Microsoft.

081wine .qxd 23.10.2000 16:51 Uhr Seite 85

WINDOWS EMULATION WINE

Note that the backslash was specified twice in each
case in the second command because it has a
special significance for the Linux shell. No matter
how you specify the file name of the program to be
executed, one thing must always be noted: each
Windows program to be executed has to be in a
directory to which a path can be formed starting
from one of the directories assigned to a drive letter.
These assignments are made in the configuration
file, and have the following format:

[Drive C]
Path=/c
Type=hd
Label=MS-DOS
Filesystem=win95

What matters here in particular is the designation in
the square brackets, (by which the name of the drive
is defined) and the value following the Path
designator which defines the Unix directory the drive
corresponds to. The Filesystem designator should in
most cases be followed by win95 , regardless of
which file system is actually being used on that drive.

If you would like to have the whole file system
of your computer available to programs running
under Wine, simply define a drive corresponding to
the root directory of your system:

[Drive R]
Path=/
Type=hd
Label=ROOT
Filesystem=win95

If Wine is used with an existing Windows installation,
the drive assignments under Wine should be kept the
same as under Windows. Otherwise there can be
problems. If a program, when running under
Windows, searches on the C: drive for a file but

under Wine the file is found on the D: drive, for
example, you are likely to receive an error message.
You can of course define additional drives under
Wine, perhaps to be able to address the root
directory of your system or your own home directory.

Command line options

If you have already tested Wine as described you will
probably have noticed that windows controlled by
Wine look like Windows windows rather than native
Linux windows and work independently of the Linux
window manager. On the whole it is better for
Windows programs running under Wine to appear
as normal Linux applications and to be controlled
like all other windows via the window manager. The
command line option --managed is used to specify
this preference this. So if Notepad is to run
”managed”, Wine would be invoked as follows:

$ wine --managed notepad.exe

Wine can also be operated in ”desktop mode.” The
windows of Windows programs are then, as under
VMware, all shown together in one window. The
command line option for this is --desktop. If desired
the size of the desktop window to be displayed can
be specified. In order to execute notepad.exe in a
desktop window with a size of 640 x 480 dots,
Wine would be invoked as follows:

$ wine --desktop 640x480 notepad.exe

Many Windows programs run under Windows 95 but
not under NT, while others may have the opposite
preference. Using the command line option --winver
you can inform Wine as to which version of Windows
it should pretend to be In order to make it appear to a
Windows program that it is being executed under
Windows NT 4.0, Wine would be run as follows:

$ wine --winver nt40 notepad.exe

To ”fake” Windows 3.1 the value win31 would be
used. Other possible arguments are win95 and
win98. If Wine is run using the command line
option --help then, like many Linux programs it
presents a list of all valid options.

Another important option is --dll. With this it is
possible to specify which libraries Wine should use
from an existing Windows installation and which it
should provide itself. To do this, the option should be
followed by the name(s) of the libraries (without the
.dll) for which the default setting should be
overridden; where several libraries are specified their
names should be separated using commas. An equals
sign can be used to specify whether the version
provided by Wine (b for built-in) or the Windows
version (n for native) is to be used. In order, for
example, to use the Windows versions of the shell
and shell32 libraries, you could invoke Wine like this:

$ wine --dll shell,shell32=n notepad.exe

[top] Fig. 7:
Installing a Windows

program under Linux with
Wine. Does this look

familiar to you?

86 LINUX MAGAZINE 3 · 2000

[above] Fig. 8:
Eh voila! Wine repays us for

all this effort with a
”managed” newsreader

Info

The Wine Project
http://www.winehq.com/

■

081wine .qxd 23.10.2000 16:51 Uhr Seite 86

WINDOWS EMULATIONWINE

The option --dll offers many more options, which are
described in the Wine man pages. To alter the default
settings and avoid the need to continually type lengthy
command lines the configuration file can be modified.

Installing Windows programs
under Wine
If you don’t have a Windows installation available to
you, Windows programs which you want to use
under Linux must be installed under Wine. In
principle that’s no problem, because installation
programs are of course nothing more than ordinary
Windows programs. In practice, however, it often
turns out that the installation programs do not work
under Wine even though the actual programs
themselves, once installed, are perfectly usable. If you
cannot install a program under Wine you should
either wait for a new version of Wine (as mentioned,
development is making rapid progress) or read the
Wine documentation and then write up a bug report.

To demonstrate the installation of Windows
programs under Wine we will use the newsreader
Free Agent (that’s the freeware version from Forte
Agent) which is popular among Windows users,. It
can be obtained from http://www.forteinc.com/
getfa/download.htm. Download the file fa32-
121.exe from this website. This is the 32-bit version
of the program. There is also a 16-bit version of the
program available which can also be used.

Before attempting to install the program you must
first ensure that Wine has write access to the Windows
directory. If necessary, Wine should be executed by the
administrator root. Then Wine can be run with the
name of the downloaded file as an argument, like this:

wine fa32-121.exe --managed

The installation program should now start. Don’t
worry about the minor graphical errors which can
sometimes arise at this point. Respond to all
requests from the program just as you would under
Windows. The installation program creates among
other things an entry in the Windows Start menu.
There is currently no link between these entries and
the start menus of GNOME or KDE. After
installation you must therefore start Free Agent
from the command line, although you can of course
create a GNOME or KDE menu entry manually. If
you have installed the program in the directory
C:\Program Files\Agent and the drive letter C:
corresponds to the Unix directory /c, you could start
the newsreader using the following command line:

$ wine /c/Program\ Files/Agent/agent.exe--maU
naged

(The backslash after Program is necessary here to
inform the shell that the space which follows it is part
of the file name.) This command starts the program,
which ought to be as usable as it is under Windows.

If you’ve made it this far, you can now try to
execute the programs in your existing Windows

installation with Wine – just start Internet Explorer!
If you have no Windows installation on your
computer, try installing some other programs. But
bear in mind that Wine is still very much under
development and consequently is not completely
stable. If your program hangs, you can terminate it
using the command:

$ killall -9 wine

Further information

This article can only give a glimpse of the
possibilities of Wine. You’ll find additional
information in the documentation directory of the
Wine source code, where there is also a
comprehensive set of installation instructions. We’d
also recommend a visit to the Wine Project’s home
page. There you’ll find links to the Wine FAQ and a
Wine HOWTO. Online support can be found in the
Wine newsgroup, which goes by the name of
comp.emulators.ms-windows.wine. ■

[right] Fig. 9:
The Wine uninstaller is found in the
programs subdirectory of Wine The
programs installed under Wine can
be managed with this.

[left] Fig. 10:
The game StarCraft shows off the
multimedia properties of Wine. Get
the StarCraft demo from http://www.
blizzard.com/starcraft/scdemo.shtml.

3 · 2000 LINUX MAGAZINE 87

[top] Fig. 11:
Wing Commander is a popular game
that can be played under
Wine. Obtained a demo from
http://www.wingcommanderprophe
cy.com/demo.html

[above] Fig. 12:
Can you tell the difference? Internet
Explorer with the homepage of the
Wine project and HTML help

081wine .qxd 23.10.2000 16:51 Uhr Seite 87

