
If you click on the Translate link on altavista.com
you’ll find yourself faced with nothing more
complex than a Web front end to Babel Fish, a
program that understands half a dozen languages
and can translate words, complete sentences and
even entire Web pages. As the art of machine
translation is still in its infancy even after decades of
development, Babel Fish can’t work miracles. Still,
for if you only need to say ”How do you do?” or
”Give me a beer, please”, in another language, or if
you want to get the gist of a foreign-language Web
site, it can be very helpful.

The Babel Fish Web form on Altavista (accessible
directly via babel.altavista.com) allows you to type
text directly into a dialog box, or to enter a Web
page URL, which will then be translated for you. This
is all very well, but wouldn’t it be good if you were
able to translate complete documents in a local file
with the minimum of fuss, with no re-typing, or
uploading to a Web site being required? We
certainly thought so, so in this Know How feature
we’ll create trans, a Perl script that links with Babel
Fish via the Internet and allows you to translate the
contents of local files with very little effort.

As you might expect, a suitable Perl module that
can be used by our script already exists;
WWW::Babelfish by Dan Urist, which can be found
on CPAN. As well as many other functions,
WWW::Babelfish cleverly avoids the 1000 character
limit imposed by Bablefish by splitting text into
chunks of less than 1000 characters, then sending
then individually to the Web site.

Multilingual Agent

Babelfish currently supports conversions in both
directions between English and either French,
German, Italian, Portuguese, Spanish or Russian.

KNOW HOWTRANSLATING WITH BABEL FISH

4 · 2001 LINUX MAGAZINE 63

The Web-based Babel Fish

translation tool is no linguistic

genius, but it can help you to

understand foreign language files.

In this feature we’ll explain how to

create a command line tool that

interfaces with it over an Internet

link, allowing you to translate local

files in a matter of seconds.

THANKS
FOR ALL

THE FISH

063perlbablefish.qxd 22.11.2000 12:06 Uhr Seite 63

KNOW HOW TRANSLATING WITH BABEL FISH

64 LINUX MAGAZINE 4 · 2001

01 #!/usr/bin/perl -w
02
03 use WWW::Babelfish;
04
05 # Dummy UserAgent
06 use constant AGENT =>
07 'Mozilla/4.73 [en] (X11; U; Linux)';
08
09 # Supported Languages
10 my @languages = qw(English French German Italian
11 Portuguese Russian Spanish);
12
13 # Build hash that assigns language abbreviations
14 # to languages (e=>English, g=>German, ...)
15 foreach my $language (@languages) {
16 my $initial = substr($language, 0, 1);
17 $i2full{lc($initial)} = $language;
18 }
19
20 # All abbreviations in one string (efgpirs)
21 my $chars = join '', keys %i2full;
22
23 # Conversion direction from the
24 # command line (g2e, e2f, ...)
25 my $way = shift;
26
27 usage() unless defined $way;
28
29 usage("Scheme $way not supported") unless
30 ($from, $to) = $way =~ /^([$chars])2([$chars])$/;
31
32 # Read in text to be translated

33 my $data = join '', <>;
34
35 # Contact Babelfish
36 my $babel = WWW::Babelfish->new(agent => AGENT);
37 usage("Cannot connect to Babelfish") unless
38 defined $babel;
39
40 # Perform translation
41 my $transtext = $babel->translate(
42 source => $i2full{$from},
43 destination => $i2full{$to},
44 text => $data
45);
46
47 die("Error: " . $babel->error) unless
48 defined($transtext);
49
50 print $transtext, "\n";
51
52 ##
53 sub usage {
54 ##
55 my $msg = shift;
56 my $prog = $0;
57
58 print "usage: $prog ",
59 "[${chars}]2[${chars}] file ...\n";
60 foreach $c (sort split //, $chars) {
61 print " $c: $i2full{$c}\n";
62 }
63 exit(1);
64 }

Listing 1: trans

Calling trans without any parameters shows
which parameters are normally expected:

usage: trans \
[efgpirs]2[efgpirs] file ...
e: English
f: French
g: German
i: Italian

p: Portuguese
r: Russian
s: Spanish

In order for the trans script to know from and into
which language it is meant to translate, the first
command line parameter indicates the direction:
e2g (English-German) translates from English to
German, f2e (French-English) translates from French
to English, for example.

The text to be translated is contained in one or
more files, the names of which follow as
parameters. The following call, foe example, would
translate the French content of the file
/tmp/french.txt into English, and then output the
result via the standard output:

$ trans f2e /tmp/french.txt

Following the old Unix tradition, it is also possible to
omit the file name, in which case trans retrieves the
data from the standard input:

$ echo "Der Ball ist rund" | trans g2e
The ball is round

In the script shown in Listing 1, you’ll note that
trans accesses the WWW::Babelfish module in line
3. This must have previously been downloaded and
installed:

WWW::Babelfish is available on CPAN under

WWW-Babelfish-0.09.tar.gz

and requires the libwww bundle as well as the
module IO::String.

As always, the installation uses the CPAN shell
and

perl -MCPAN -eshell
cpan> install libwww
cpan> install IO::String
cpan> install WWW::Babelfish

he supported languages are in lines 10 and 11. The
list definition operator qw delimits the enclosed
string at the word boundaries (spaces and linefeeds)
and returns a list that contains every word as an
element.

In order to be able to access the complete
language names (e.g. English) via the abbreviations
(e.g. e) in an elegant manner later on, lines 15 to 18
build a hash table %i2full, which contains the
abbreviations as keys and the language names as
values. For this, the function substr takes the first
letter in any language name and the function lc
converts it into lower case.

Line 21 assembles all available abbreviations
into a string $chars to be used later on. This string is

063perlbablefish.qxd 22.11.2000 12:07 Uhr Seite 64

confined to the current package using my, but is
also available in the subfunction usage.

$way in line 25 uses shift to retrieve the first
command line parameter, which indicates the
direction of the translation. If no parameter is
present, the user has obviously not understood the
syntax of trans, so the function usage provides
some operating instructions and aborts the
program.

The regular expression /^([$chars])2([$chars])$/;
in line 30 interpolates with /^([efgpirs])2([efgpirs])$/;
and checks whether the direction indicator conforms
to the format x2y, where x and y assume the value
of e, f, g, p, i, r or s. Since the expression is used in a
list context and there is a list to the left with the
elements $from and $to, after a successful match
this will contain the values within the brackets of the
regular expression. For g2e this would be g in $from
and e in $to. If the match fails, however, the result is
an empty list which is interpreted as false within the
Boolean context of unless.

Line 33 reads in the text to be translated, either
from files named in the command line or from the
standard input if no files names are specified. The
join function joins the lines into a long string while
obviously retaining the linefeeds.

The Babelfish Object

Line 36 creates a new WWW:Babelfish object and
instructs it (via the agent parameter pair) to pass
itself off as a Netscape browser using the constant
specified in line 6 with Perl’s use constant. This
makes it possible to define functions which look like
macros, and that are optimised by Perl in such a way
that they are by no means inferior to constant
scalars.

According to its documentation,
WWW:Babelfish returns the value undef if anything
goes wrong, which line 37 would take as a cue to
abort.

Finally, line 41 sends all data to Babel Fish on the
Web. The translate method receives the full
(English) names for source and destination
language (parameter names source and
destination), as well as the text to be translated in
the form of a string value for the text parameter.

The object sends the data to the form,
interprets the returned HTML and extracts the result
from it, all without any intervention from the user.
The result is contained in $transtext. A value of
undef indicates an error, which is captured by line
47 and displayed as a message using the
WWW::Babelfish object’s error method. Lastly, line
50 sends the result to the standard output.

Operating Instructions

In order to make it easy for new users to learn the
operation of trans, the usage function defined from
line 53 outputs a message and then brief operating

instructions. Afterwards, the program is terminated
using exit(1).

The operating instructions are generated
dynamically by usage from the content of the
variables $chars and %short, which contain the
valid abbreviations and a table listing abbreviations
with their corresponding language names.

The Perl function split in line 60 splits strings
into their components using // as a pattern, and
returns an array which contains every character as
an element. The function sort sequences the array
of lower case letters alphabetically and the hash
%short provides the corresponding language
names.

The sequence of supported languages could
also be retrieved using the languages() method of
the WWW::Babelfish object, which returns an array
containing all current languages. trans does not do
this, however, as the range is relatively static.

Great Moments in Translation

We thought you’d like to see few examples of
Babelfish’s translation capabilities. In all cases we
called trans with only the language direction
parameter, then we entered the text to be
translated via the standard input and finished with
^D (Control+D):

$ trans g2e
Einen Radi und eine Mass
Bier, aber schnell!
^D

A Radi and measure beer, but fast!

Not too bad, but by no means perfect. Let’s try
English to French instead:

$ trans e2f
waiter, a bottle of your
finest English wine please!
^D

serveur, une bouteille de votre
vin anglais plus fin s'il vous pla‰t!

Or English to German:

$ trans e2g
waiter, this beer
tastes terrible!
^D

Kellner, dieses Bier
schmeckt schrecklich!

So, there you go. It works. We have to warn you
that more complex translations are handled less
well, though. Technical information in particular
tends to get a bit mangled. It can still help you
understand documents that you’d normally have to
send off to a translator for interpretation at great
cost, however, and all with the greatest of ease. ■

KNOW HOWWITH BABEL FISH TRANSLATING

4 · 2001 LINUX MAGAZINE 65

Michael Schilli
works as a Web engineer for
AOL/Netscape in Mountain
View, California. He is the
author of „GoTo Perl 5”,
published in 1998 by Addison-
Wesley (and in 1999 as „Perl
Power” for the English-
speaking market). Homepage:
http://perlmeister.com.

063perlbablefish.qxd 22.11.2000 12:07 Uhr Seite 65

