
KNOWHOW DISPLAY-SERVER

56 LINUX MAGAZINE 4 · 2001

Berlin - Alternative to the X Window System

DOWN
WITH THE

X-WALL!
TOBIAS HUNGER

Linux users are

getting more and more

spoilt – calls for

features such as font-

anti-aliasing or alpha-

blending are getting

louder all the time. And

at the same time, of

course, the system has

to be high-performance

– the X Window system

can help only to a

limited extent. The

Berlin Project, with its

modular, object-

orientated architecture,

is attempting to make a

new start.

056Berlin.qxd 21.11.2000 16:51 Uhr Seite 56

More than a decade has now gone by since the
development of X-Window. It is not least for this
reason that this display system is very robust.
Continual new demands from users can be fulfilled
with the aid of expansions of the X-protocol.
Despite the far-sightedness of its creators though,
the X Window system is gradually coming up
against its limits. 3D applications can only be used
effectively with a complicated GLX/DRI mix.
Smoothed character sets are still awaited. X also
allows only one ToolKit-related configuration. If you
play in a KDE theme, the appearance of the Gimp
does not alter for a long time.

New start

Berlin offers a central configuration of its
appearance. This means that applications present a
consistent "Look and Feel" at all times.

Gaming fanatics will love the rotating and
transparent windows. For programmers the most
interesting feature must surely be the device-
independent graphics output. The best possible quality is
always used, regardless of whether a monitor or a printer
is employed for output. As a result, there is no need for the
print routines necessary for X, or to adapt a program to
different colour depths and screen resolutions.

Goals

Berlin's goal is to create an alternative to X which
can cope better with modern hardware and can be
more easily adapted to new input and output
devices. The whole system is meant to be modular,
so that the actual server is scaled by the selection of
suitable modules. Thus the same server should run
on both a small PDA and a large 3D graphics

KNOWHOWDISPLAY-SERVER

4 · 2001 LINUX MAGAZINE 57

Table 1: History - From Interviews to Berlin
1988 InterViews, Stanford University (Linton, Calder, Vlissides)

InterViews was a fruitful attempt to combine structured graphics and object-orientation.
1994-98 Fresco, X Consortium

Fresco was the successor to InterViews, extending many of its ideas and integrating the
individual libraries into a modular framework. The main focus of the development was a
combination of distributed objects and "distributed graphical embedding". The internal use of
an ORB even accelerated the development of COBRA. The Fresco project no longer exists,
however, Berlin now being used to manage the remaining documents and archive (see later).

1997 GGI Project
The GGI Project was established in order to obtain a general protocol for writing graphics
drivers. By separating the Linux kernel from the programmer interface, it enables access to all
the functions of modern graphics hardware in complete safety.

1997 Berlin Project
By building on GGI, Berlin was an attempt to produce a very easy, powerful windowing system.
Portability was considered important, but speed and efficiency were the biggest priorities.

since 1998 Berlin Project, the second generation
The establishment of standards such as OpenGL, COBRA and Unicode caused a change in the
original Berlin focus, which is now portability and efficient through the use of common
standards. In the search for inspiration we stumbled across Fresco, from which we have now
taken large parts of the source texts. Indeed, the Berlin of today now has more in common
with Fresco than with its own code from before 1998!

Fig. 1: Whether rotated or
enlarged: TrueType- and
Bitmap fonts are improved
in quality as the result of
edge smoothing.

Fig. 2: Example of
a structured graphic
(Left scenegraph,
right result)

056Berlin.qxd 21.11.2000 16:51 Uhr Seite 57

workstation. It should also make best use of any
available hardware without any changes to its
source text. Berlin is trying, by means of abstract
interfaces, to develop a system which allows a
program to be made usable without alterations in
both a truly walk-in 3D environment as well as in

the classic 2D look and potentially even as an
"acoustic user interface" for the visually-impaired.
The whole system is being developed under the
GNU Library General Public License.

Concepts

Berlin is essentially based on two concepts. The first
is that of so-called "structured graphics", where
simple objects such as lines, letters, but also
transformational functions such as rotations or
crops, are amalgamated into more complex objects.
The whole procedure is similar to drafting drawings
in vector graphics programs. Figure 2 shows one
such (simplified) tree structure and the image
created from it. In the example, several glyphs
(graphical representations of letters) and a complex
vector graphic are combined into a hBox. This
element allows all subordinate graphics to be
displayed side by side on a common baseline.

Model-View-Controller ("MVC") is derived from
the programming language Smalltalk and is a
second concept which is central for the
configurability of the user interface. This means that

KNOWHOW DISPLAY-SERVER

58 LINUX MAGAZINE 4 · 2001

Fig. 4: The components of Berlin

Fig. 3: The interplay of model,
views and controllers

056Berlin.qxd 21.11.2000 16:52 Uhr Seite 58

a program ought to be split into three different
function groups. The Model contains the status of
the program. That could for example be a number
of binary states, a variable value in a given interval
or a text. This model is processed by one or more
Controllers. As soon as one of these controllers
alters the state of the Model, the latter notifies this
alteration to all Views involved. The views thus
represent the graphical appearance of a program
and the controllers its behaviour. In the interests of
configurability by the user, Both should be as
flexible as possible. The actual program functions
and data stay in the model, the logistical backbone.
Figure 3 shows how these three components
interact. Here, the model consists of three numbers,
which represent the red, green and blue parts of a
colour. The colour field in the middle observes this
model. If that changes, its colour changes
correspondingly. The controllers here are the slide
controllers. If these are moved, they change the
corresponding colour values of the model.

..and their realisation

Berlin uses a so-called scenegraph for display. This is
a structured graphic stored in the server. Here it is
possible to see the strict separation of the model in
the client and the associated views in the server. In
the tree-like structure of the scenegraph, each client
is responsible for one part of the tree. The client can
insert, process or delete graphics, thus creating their
own illustration. These graphics are demanded by
the client from various modules in the server. The
entire graphical representation of the clients is
found there. Subgraphs (such as a window content)
can be affected with the aid of upstream decorator
patterns. These patterns are in fact invisible
graphics, which affect the appearance of their
dependents. These can be displacement, rotation,
or a change of fonts or colours. The displacement of
a window may be caused by its descriptive
decorator pattern being inserted in front of the
window subgraphs. This causes little or no
communication with the client. The server has all
the information it needs to redraw the whole
window.

Up to this point no assumptions whatsoever
have been made about the basic hardware. All
details within the scenegraph are abstract. They are
also independent of the pixel co-ordinates and
colour codings of the hardware. For this reason, the
normal application developer no longer needs to
worry about colour depths, screen resolutions and
print support. Berlin adapts the output accurately to
the output device in use, regardless of whether this
is now a monitor, a video wall or a printer. Various
DrawingKits are used to do this. These run through
the scenegraph in a so-called draw traversal and
thereby create an output that can be processed by
the basic hardware. Currently raster and OpenGL
display lists are catered for.

A Postscript DrawingKit is planned.
Figure 4 and Table 2 describe individual
components of Berlin.
These exclude DrawingKits (which has already been
described) the DesktopKit, which contains functions
for control of windows, and the WidgetKit, which
provides frequently used graphical user interface
and display elements of particular importance. Both
of these kits have a similar function in Berlin to the
various window managers and GUI-ToolKits in X.

Interaction

One part of the scenegraph consists of controllers.
These are graphics objects which can receive,

KNOWHOWDISPLAY-SERVER

4 · 2001 LINUX MAGAZINE 59

CORBA
CORBA (Common Object Request Broker Architecture) is a standard for the
development of distributed systems. In such systems the entire
functionality of an application is represented by objects. In such an
architecture, the distinction between client and server becomes blurred.
Client-components can create objects which behave like servers.

The flexibility of distributed systems arises from the fact that all
components possess a defined interface. This interface tells the
components which services another component provides and how these
can be used. As long as this interface remains unaltered, the
implementation of a component can alter fundamentally, without the
other objects involved being aware of this.

With Interface Definition Language (IDL), CORBA provides a standard
mechanism for the definition of such interfaces. IDL is not an
implementation language – only interfaces between objects can be
defined. Source texts are created next from these definitions in the various
programming languages that implement these interfaces. Only now do
they need to be provided with the program logic. Berlin clients in C++,
Python, Perl and Java have already been realised using these features.

In addition CORBA offers various services which make it possible to find
an object. It also allows communication between different objects
(including via address space) and even beyond computer limits. This
communication is mediated through one or more ORBs (Object Request
Brokers). On the basis of its Object Reference, the ORB can find and contact
the object in the network.

Table 2: The components of Berlin
Display Server: How the X-Server represents the graphical interface of a

client.
libBerlin, libWarsaw connect the client or server respectively to the Object

Request Broker (ORB).Both are created by a compiler
fromBerlin's CORBA interfaces.

ORB The CORBA ORB allows communication between client and
server, regardless of their respective locations in the network.

libPrague contains classes which abstract Berlin from its underlying
hardware.This library is intended to allow easy portage of
Berlin.

Console Another abstraction. The console converts events from
external libraries that query the hardware into Berlin events.

Kits Kits are dynamic loadable modules, which provide
respectively defined functions. Configuration of Berlin is
possible by simply exchanging kits during run time.

056Berlin.qxd 21.11.2000 16:52 Uhr Seite 59

process and if necessary pass on events. So
controllers are special decorator patterns, which
alter not the appearance, but the behaviour of their
dependents. Any graphics you desire can be
converted, into a button for example, by adding a
corresponding controller. All controllers are
combined into another graph, the Controlgraph. A
pick traversal is applied to this, to find the right
recipient of an event.

Events in Berlin are kept more abstract than for
example in X in order to be prepared for future
input devices. This also makes events easier to
synthesise. Used perhaps to simulate a mouse via
the keyboard or to enable a pen-based input on a
PDA.

Since controllers are in the server, many events
can be carried out without any communication
whatsoever with the client. The displacement of
windows is another example here. The responsible
controller of the DesktopKit communicates directly
with the transformer of the window.

CORBA, with all its functions, seems ideal to
take over this communication between server and
client-objects. The Berlin interfaces defined with IDL

correspond in their function to the X-Protocol. But
as a rule, communication via CORBA is slower than
via sockets. This frequently leads to the assumption
that Berlin must be slower than the X Window
system. But since communications between objects
which live in the same address space are depicted in
C++ as a virtual method call and in Berlin the vast
majority of communication takes place in the
address space of the server, slower communication
between client and server is just a bad memory.
Even demo-applications with a high proportion of
communication between client and server are not
significantly slower than those with a high
proportion of communication in the server.

Kits

The separation of interface and implementation
makes little sense if a programmer can only create
elementary objects such as lines, letters or simple
controllers. It makes much more sense to create
special objects, so-called Factory-objects. This can
make and "wire" complex trees of elementary
objects in one go. In Berlin there are several such

KNOWHOW DISPLAY-SERVER

60 LINUX MAGAZINE 4 · 2001

Compatibility
Berlin and X have so few common features that the user cannot simply use his normal
applications under Berlin. This is a serious drawback. Who wants to do without his favourite
application? So how can Berlin be adjusted to represent existing programs?

Pixel-Level bridge
The simplest option for achieving X-compatibility is to run an X-server in a window. This
option is technically relatively simple to realise and makes it possible to use all X-applications
under Berlin. The drawback is that none of the advantages of Berlin come into play in this

conversion. A conversion of this pixel-level
bridge is already being worked on. Display is
already functioning (see Figure 5), but there is
as yet no passing on of events from Berlin to X.

Widget bridge
In a widget bridge a wrapper library is written
to convert calls to an X-based GUI-ToolKit into
corresponding Berlin structures. Such a bridge
has the advantage that the fundamental
characteristics of Berlin (transformations,
server-side object communication) are largely
retained. However, realisation is very time-
consuming and does not result in any
additional function with respect to the X-
version of the GUI-toolkit.

High-Level-Bridge
Many applications now use GUI description
languages, mostly based on XML, such as
Glade, XUL and Entity. With such a "global
knowledge" about a user interface it may be
that better connections are made between
Berlin and ToolKit widgets, than is usually the
case with the widget bridge.

Figure 5: X in Berlin in X

056Berlin.qxd 21.11.2000 16:52 Uhr Seite 60

factory objects. These are all responsible for a
specified type of objects and are combined into Kits.
These kits are the mechanism on which the whole
modularity and configurability of Berlin is based.
The server itself has just one function – to reload kits
dynamically. It does not even need to know which
interfaces a kit makes available to do this. It is
enough that the application program knows.

Widgets and taskets

One of the most interesting aspects of drafting user
interfaces is the interaction between man and
machine. Over the course of time certain
metaphors, such as icons, buttons and scrollbars,
have been developed. If the architecture itself
demands a separation of data and presentation
(keyword MVC), it can't be that difficult to design

the presentation objects in such a way that their
appearance, as well as their function can be
configured.

What looks to the user like a complex product,
perhaps a scrollbar, is displayed as a structure in
Berlin. Elsewhere, objects have defined attributes
and status variables. Here these are an arrangement
of graphics and controller objects, created with the
aid of one or more factory objects. The creating kit
is the only authority that knows the precise
structure. This is the basis for the selection of
different display methods. By exchanging the
"WidgetKits", a different appearance is achieved.

More abstract levels can also be permitted.
When one considers the function of a scrollbar, one
notes that it alters a value within given limits. If one
only takes these tasks, one reaches the term
"Taskets". When a user wishes to find a list with

KNOWHOWDISPLAY-SERVER

4 · 2001 LINUX MAGAZINE 61

Getting started...
Installing Berlin is not totally simple, as we use a few
"incomplete" libraries, which have sometimes not yet
made an entry in the current distributions. For this reason,
there are still no Berlin packages in binary format.
The libraries needed are, in detail:
* libGGI Version 2.0 beta
* Mesa Version 3.1 (with GGI-Support) or
* libArt, from the Gnome-CVS-Tree
* FreeType Version 2.0 beta 8
* libPNG Version 1.05
* libz Version 1.1.3

All these libraries are really easy to install. Only GGI and
Mesa with GGI support occasionally cause problems. The
associated demos have to run – otherwise Berlin will not
function either!

The next thing we need is an ORB. All ORBs with a
language connection to C++ which support the POA and
provide a name service, are suitable for Berlin. We would
advise using omniORB Version 3.0 (or later). So far this is
the only one to be "automatically" recognised. With
others, manual modification of the Makefile is necessary.
The installation of omniORB shouldn't give rise to any
problems. After that the name service has to be configured
and started. For this, the file /etc/omniORB.cfg is required.
In this case, this contains the following lines:

ORBInitialHost C3PO
ORBInitialPort 8088

Please replace "C3PO" with your own computer name.
When this file has been created, omniNames can be started
for the first time:

omniNames -start 8088 \
-logdir /var/log/ \
-errlog /var/log/omniorb-errors

A good test of the configuration of the name service is to
call up nameclt list. If this waits for a time-out, then
something is wrong.

Finally, to compile the sources, we need a C++ compiler.

The g++ version 2.95.2 is a good choice. Earlier versions can
cause problems under some circumstances. You need to
bear in mind that the compiler has to cope with
multithreading (the compiler itself must have been
converted with the option '–enable-threads'). All the more
recent distributions should comply with this requirement.

All that is needed now is the source code for Berlin.
Depending on how adventurous you feel, you can choose
between "stable" releases or nightly snapshots. It is also
possible to check out the CVS Repository. The releases are
split into smaller modules. The packages "Berlin",
"Prague", "Warsaw", "Server" and one of the clients will
be needed for testing.

You're motoring once you've unpacked the packages. A
simple make is enough. First the user will be asked some
questions. The default answers should usually be
appropriate in each case. The compilation will then start
immediately. Installation is not yet foreseen – all programs
can be executed directly from their directories.

Berlin needs a few environmental variables. These can be
get using

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:\
`pwd`/lib

export BERLIN_ROOT=`pwd`

Please take note that these commands have to be executed
in the uppermost directory of the Berlin source tree. When
using shells other than bash, the commands should be
adjusted accordingly.

Next, the server can be started with server/server.
Depending on whether you are on the console or in X, the
screen will either be black, or a black window will appear.
At first, nothing else will happen.

Now a client can be started. This, too, needs both of the
environmental variables mentioned above. The C++ client is
started with clients/C++/demo.

In the case of problems the Berlin FAQ can be of
assistance, and in more difficult cases, the mailing lists will
help. Links to both of these can be found on the homepage
of the Berlin project.

056Berlin.qxd 21.11.2000 16:52 Uhr Seite 61

given values, he can do this in various ways ranging
from menus, up to radio buttons. All perform this
same task, so implementations can be one and the
same tasket. In addition to the WidgetKit, Berlin
also provides another more abstract "TasketKit"
enabling the user to seek out his preferred selection
method. This can either demand a radio-button
group from the WidgetKit or instead do something
completely different. The imagination has no limits.
A menu is less useful than an acoustic response for
the visually impaired. The application developer has
the option to either impose the appearance of
his/her application, by manipulating elementary
graphics objects, or work as usual with Widgets. He
or she can decide to work with even more abstract
products, such as Taskets.

Development status and
prospects
It may appear that the Berlin Project has done little
in recent months. But there have been a few
changes in the internal structure. First of all, many
dependencies on other projects have been
dissolved. Berlin no longer needs MesaGGI because
of the libArtDrawingKit. A new hardware
abstraction layer, the "console" means that even
the dependency on the GGI

(General Graphics Interface) has now gone.
ORB has now become exchangeable. Apart from
this, the whole architecture is more robust. This is
the result of improved memory management.

Berlin is now truly stable and a bit faster than in
previous versions, although there is still a great deal
of room for refinement. Nevertheless, Berlin is not
suitable for end users. Apart from a few demos,
there are still no applications. There isn't even a
complete set of Widgets in order to develop these.
At present, Berlin should be regarded as more of an
experimentation field for developing man-machine
interaction.

Since the architecture is now in large sections,
work is now slowly beginning on the implementation
of additional widgets. Portage to BSD and other
systems is in the pipeline, together with the
integration of additional libraries such as SDL and
GLUT in Berlin. The developers are hoping that this
will provide the long awaited "hardware support" for
display. Until now, Berlin has had to manage with just
software rendering. At the same time, portage onto
an SGI Onyx is in the works. The project team
members are hoping to be able to try out Berlin in a
real, walk-in 3D environment on this machine. In
preparation for this a so-called PrimitiveKit is being
worked on. This will make it possible to insert simple
three-dimensional objects such as spheres and cubes
into the scenegraph. Of course, the development of
the so-called canvas widget is not standing still,
either. This could be used to embed an X-Server in
Berlin. The TextKit is currently still in a revision phase,
because it still does not provide the bi-directional
textflow which would be necessary for complete
representation of Unicode symbols.

It is obvious that there is still a great deal to be
done before Berlin is seen as the dreamed-of
alternative to X. The team of the Berlin Project would
be delighted to receive any assistance in further
development. ■

The author
Tobias Hunger is a student of

computer science at the
University of Kaiserslautern.

He also runs a company
dealing with questions

concerning network and
computer security.

KNOWHOW DISPLAY-SERVER

62 LINUX MAGAZINE 4 · 2001

Info

[1] Berlin Homepage http://www.berlin-consortium.org/
[2] Fresco Homepage http://www2.berlin-consortium.org/fresco/

[3] CORBA Information http://www.corba.org/
[4] Unicode Standard http://www.unicode.com/

[5] OpenGL Information http://www.opengl.org/
[6] Die LGPL (GNU Library General Public License)

http://www.gnu.org/copyleft/lgpl.html
[7] GGI-Project Homepage http://www.ggi-project.org

[8] Mesa (free openGL-Implementation) http://www.mesa3d.org/
[9] libArt http://www.levien.com/libart/

[10] FreeType Homepage http://www.freetype.org/
[11] PNG Homepage http://www.libPNG.org/pub/png/

[12] zlib Homepage http://www.info-zip.org/pub/infozip/zlib/
[13] omniORB Homepage http://www.uk.research.att.com/omniORB/
[14] Berlin Sourcecode http://www.berlin-consortium.org/install.html

■

056Berlin.qxd 21.11.2000 16:52 Uhr Seite 62

