
PROGRAMMING USING GTK

66 LINUX MAGAZINE 4 · 2001

Graphic user interfaces with Gtk

GTK IN
SHEEP'S
CLOTHING

TOBY PETERS

When developing

graphical user

interfaces, object-

oriented programming

can really demonstrate

its strengths. The

widely-used Gimp

Toolkit is object-

oriented in structure

even though it is

written in C. However,

in order to make best

use of it with C++ a

wrapper is needed,

such as Gtk--.

066gtk.qxd 21.11.2000 17:05 Uhr Seite 66

Anyone wanting to write a program with a
graphical user interface for the X Window system is
faced with the question of which library to use.
Even if you have already decided upon C++ as the
implementation language, there are still many
different libraries to choose from. Several of the
better-known C++ libraries are listed in Table 1, but
many more exist. In this article we will introduce the
library Gtk-- version 1.2.2. (Version 1.2.0 should not
be used, incidentally, since this could cause
problems at the next update).

Gtk-- is a C++ wrapper round the Gimp Toolkit
Gtk+. In other words, this library provides the
application programmer with C++ interfaces but
uses the C library Gtk+ to do the real work such as
drawing objects on the screen or waiting for events.
Gtk+ has been used to create the Gnome Desktop.
There is also a C++ wrapper around the Gnome
widget set called Gnome-- which is built on Gtk--.
In this article, however, we shall only be looking at
Gtk-- itself.

Of libraries and wrappers

Why are we supposed to use a wrapper round a C
library anyway? Because it is compatible with C it is
possible to use any C library within a C++
application, and in this case, therefore, also Gtk+!
A number of C++ applications do this, Abiword
being a well-known example. When using a C
library, however, there are a whole series of
disadvantages and traps waiting for the unwary
programmer.

To register callbacks a C library like Gtk+ expects
a pointer to the function that is intended to be
called. This means that the C++ programmer is
restricted when using callbacks to global functions
and static methods because only they are
compatible with pointers to C functions. In a C++
application, however, we also want a method of
registering a specific object as a callback. To achieve
this, an adapter function must be used which will
allow itself to be registered as a callback and then
calls up the appropriate method of the object
required. The adapter function must know to
which object the method belongs and which it is
supposed to call up.

Gtk+ can store any desired pointer to void as
the attribute of a callback and can pass this pointer
as a parameter when the callback function is
invoked. In other words, we have to cast a pointer
to the object initially as void * in order to be able to

store it temporarily in the library during the
registration of the callback. The pointer, which is
received from the library when the callback is
invoked, is now of the type void *, and that leads to
the next disadvantage.

Type checking must be disabled during
compilation. In order to make use in the callback
function of the object which is referenced by the
pointer just mentioned, it has to be cast back and a
check made in the process as to whether the
referenced object also has the expected type, for
example with dynamic cast<T*>. Type tests will
therefore not take place until run time.

Another disadvantage of C libraries – and a real
trap with wrappers – are exceptions, because
exceptions cannot be thrown by the C library. If an
exception is thrown in a callback, this exception
must be caught again before it reaches a function
of the C library, because exceptions can't go any
further in functions written in C.

The small program from Listing 1 consists of
two files, one C source file c_exception.c, which
simulates a C library function, and a C++ source file
c_exception.cc, which takes on the role of a C++
application. This program demonstrates the
difficulties with exceptions in this arrangement:

gcc -c c exception.c
g++ -o c exception c exception.cc c exception.o

If it is compiled in this way, the text 0 caught"

PROGRAMMINGUSING GTK

4 · 2001 LINUX MAGAZINE 67

Listing 1: Exceptions and C
/* File c exception.c */
void c func(void(*cxx func)(void)) {
cxx func(); // calls up the transferred
} // function

/* File c exception.cc */
#include <iostream>
extern "C" {
void c_func(void(*)(void));

}
void thrower (void) {
throw int(0);

}
int main(int, char**) {
try{
c_func(&thrower);

}
catch(int i) {
cout << i >> " caught." << end1 ;
}

}

Table 1: Some GUI Libraries for C++
Library License Platforms Note
Gtk-- LGPL Unix, Windows C++ code wrapper for Gtk+
Vdk LGPL Unix code wrapper for Gtk+
wxWindows LGPL or wxWindows Unix, Windows, Macintosh code wrapper for Gtk+ and

Library License, Version 3 Motif
Qt GPL or comercial licence Unix, Windows Very good documentation,

basis of KDE

066gtk.qxd 21.11.2000 17:05 Uhr Seite 67

will not be output. Instead, the program will be
interrupted if the exception reaches the C function.
Because a wrapper calls the functions of the
wrapped library it cannot eliminate this problem
either. This is a clear disadvantage of wrappers in
relation to pure C++ libraries.

There are two ways of getting round this
problem. Either you recompile the C library yourself,
from scratch, with support for C++ exceptions
(using special compiler settings) or you must allow
for them in the program design. To use the former
method with the GNU C compiler you use the
switch -fexceptions.

To use this method with the program in Listing 1:

gcc -fexceptions -c_c_exception.c; g++ \
-o c_exception c_exception.cc c_exception.o

Compiled using this command, the exception is
caught in main. If this method is used, however,
users of the program must also recompile the C
library, which is not something they would normally
be expected to do. There are other disadvantages,
too. After the exception, the C library doesn't

release its resources with the result that the next
time it is called it is in an unstable state.

It is therefore better to be flexible. Either do
without exceptions altogether or take meticulous
care in catching all exceptions before one of them
reaches a function of the C library or the wrapper.

The basis: Gtk+

Gtk+ is a GUI library written in C but still object-
oriented. The developers of Gtk+ have had a hell of
a job to implement a class system with support for
inheritance and virtual methods in C. Let's take a
quick look at how inheritance works in Gtk+, and
what consequences this has when using these
classes.

Classes in Gtk+ are structs which contain as the
first element the struct of the parent class:

struct Child {
struct Parent parent;
/* ... attributes ... */

};

A pointer to an instance of Child can be cast as a
pointer to a Parent, because both pointers point to
the same address in memory. But during inheritance
there is something more to be taken into account:
the list of virtual methods. Because of this there is
no quick way to derive a new class from an existing
class in the library.

An extract from the class hierarchy of Gtk+
widgets (GUI elements) and the corresponding
hierarchy of Gtk– are shown in Figure 1. The
methods of the Gtk+ classes are conventional C
functions with the name and signature convention.

gtk <class name> <action>(Gtk<classname> *,
<Arguments>)

They are always called after their class and expect,
as the first argument, a pointer to the object to
which the method belongs. For example:

gtk_container_add(GtkContainer*, GtkWidget*)

which is a method of the class GtkContainer which
packs any other desired widget into the container
widget.

A button is also a container in Gtk, and can
contain another widget. In this way a button can
contain a label (text), a graphic or another container
which combines both. Here's an example using
Gtk+ of how a label can be integrated into a
button:

GtkButton * button = /* ... */;
GtkLabel * label = /* ... */;

gtk_container_add(GTK CONTAINER(button),
GTK_WIDGET(label));

This should now persuade every C++
programmer to use Gtk-- rather than Gtk+
directly. The widgets would in this case have to

PROGRAMMING USING GTK

68 LINUX MAGAZINE 4 · 2001

Fig. 1: Extract from the
propagation hierarchies

066gtk.qxd 21.11.2000 17:05 Uhr Seite 68

be explicitly cast using macros to the anticipated
type, because otherwise the program cannot be
compiled. A check on whether the casts are
permissible at all will, however, only take place at
run time.

In addition, it should be borne in mind that the
method add was introduced as a method of
GtkContainer, and not, for example, as a method of
GtkBin (see the class hierarchy in Figure 1). The class
in which a method was introduced will influence the
name of the function which is to be called and the
cast which is to be applied to the object.

Now the good news. Using Gtk-- the same code
extract looks like this:

Gtk::Button button;
Gtk::Label label(/* ... */);

button.add(label);

Aims of Gtk--

Gtk-- tries to wrap Gtk+ entirely. For each Gtk+
widget there is a C++ class. The class hierarchy of
the C++ classes in Gtk-- corresponds exactly to the

PROGRAMMINGUSING GTK

4 · 2001 LINUX MAGAZINE 69

libsigc++: Type-secure dynamic callbacks in Standard C++

Thanks to the compile-time type safety checks performed by the C++ compiler a great many
program errors can be detected by the compiler. This type checking should also be applied
to callbacks. To maximise reusability, classes from different parts of a program should be
decoupled from one another as far as possible.

Type security and decoupling are two aims of program development that tend to conflict
with one another. But with the aid of libsigc++, both can be achieved. Libsigc++ generates
binder elements in standard C++ between the sender and receiver of a message, which the
compiler can then check for compatibility. Sender and receiver need know nothing of each
other; the only consideration is that the type of message (signature) which they send and
receive must be identical.

The binding element on the sender side is the signal: SigC::Signal#<return type,
parameter type1,…, parameter type#>. In this situation, the #-sign stands for the number
of call-up parameters. Such a signal is a normal data type, an instance of which can be
deposited in a class which is intended to send information.

The binding element on the receiver side is the slot. Slots treat function and method calls
in the same way, and are generated by a "slot factory."

We have, then, the two sides, sender and receiver, who know nothing of one another.
From a third place in the program, from which both the sender (Signal#<201>) as well as the
receiver function or method are visible, the connection can now be made:

sig.connect(SigC::slot(&function)); sig.connect(SigC::slot(&object,&class:µethod));

SigC::slot is the "slot factory" mentioned. A class whose methods are to be called up in this
way must be derived from SigC::Object. The connect calls are only allowed by the compiler if
the signatures of the signal and slot match. The slots are called by the sender using the
signal instance:

r = sig(params);

Several slots can be connected using the same signal, or none at all. Several slots may be
called up one after another: the return value of the last slot is then returned.

If this procedure isn't satisfactory it can be changed: The signals are additionally
parameterised to the call-up signature using a marshaller class. An object of such a
marshaller class is fed with the return values of the slots when they are called up, and from
this generates a total return value. In addition to this, this object can decide after each slot
call-up whether further slots are to be called up, or whether the call-up of further slots is to
be suppressed. The marshaller class installed and used as standard in libsigc++ will ensure
that all slots are called up and that the return value of the last slot is used as a total return
value. If there is no slot at all connected to a signal it returns an instance of the return type
created using the default constructor.

If another procedure is desired you can create your own marshaller class and use this as
the last template argument of the signal instance.

The connections established using connect() can also be released if the return value of
connect() is stored and its method SigC::Connection::disconnect() is called. Also, if the signal
instance or the object is destroyed, the connection will be released automatically.

Fig. 2: The program
from Listing 2

066gtk.qxd 21.11.2000 17:05 Uhr Seite 69

PROGRAMMING USING GTK

70 LINUX MAGAZINE 4 · 2001

/* hello.cc
A "Hallo World" program for Gtk--.

This program initially defines a HelloWindow class derived from
Gtk::Window, which arranges two buttons and a label in a window
in the following way:

+--------+-------+
| Button | Label |
+--------+-------+ (To determine the arrangement,
| Button | an HBox and a VBox are used)
+----------------+

In main () an instance of this class is generated and used.
*/

#include <iostream>

// Headerfile for Gtk::Window, a main window for X11 applications:
#include <gtk--/window.h>

// Headerfile for Gtk::HBox, Gtk::VBox, two containers, which arrU
ange
// any desired widgets next to or on top of one another:
#include <gtk--/box.h>

#include <gtk--/label.h> // Gtk::Label
#include <gtk--/button.h> // Gtk::Button

// Headerfile for Gtk::Main. Each Gtk-- application must instancU
e an
// object of this type precisely.
#include <gtk--/main.h>

// Instead of the individual header files, we would also have
// been able to write only #include <gtk--.h>. This will allow
// all the header files to be read in. For larger projects, howevU
er,
// this is not allowed because of the extended translation time.

// The new class which is inherited from an empty application windU
ow:
class HelloWindow : public Gtk:Window {
Gtk::VBox vbox;
Gtk::HBox hbox;
Gtk::Button hello_button; // the button top left
Gtk::Label world_label; // the label top right
Gtk::Button bye_button; // the bottom button

protected:
// We overwrite a virtual function which is called up automaticaU

lly
// if it is intended that the application window should be closed
// by the window manager:
virtual gint
delete event impl(GdkEventAny*);

public:
// The constructor receives three strings as arguments, which
// are indicated by the buttons (strings 1 and 3) or the label.
HelloWindow(const string & hello string,

const string & world string,
const string & bye string);

// Callback method, which should be called up
// when the top left-hand button is clicked.
void say hello(void); // Issues "Hello!" on the terminal.

// Callback method, which should be called up
// when the bottom button is clicked.
voidsay goodbye(void); // Issues "Good Bye" and ends the program.

};

HelloWindow::HelloWindow(const string & hello string,
const string & world string,
const string & bye string)

// The HBox and the VBox are initialised by the default

// constructor. The buttons and the label are initialised with
// the strings which are passed over. (Button has a comfort
// constructor, which produces a label and inserts it in the buttoU
n.)
: hello button(hello string),
world label (world string),
bye button (bye string

{
// Insert the top left button into the HBox:
hbox.add(hello button);
// All widgets must be made visible with show():
hello_button.show();

// Insert the top right-hand label into the HBox next to the butU
ton:
hbox.add(world label);
world_label.show();

// Insert the HBox into the VBox:
vbox.add(hbox);
hbox.show();

// Insert the bottom button beneath the HBox, which contains thU
e other button and the label:
vbox.add(bye button);
bye_button.show();

// Insert the VBox into the application window (*this):
add(vbox);
vbox.show();

// Connect the buttons with the callbacks (see box about libsigU
c++):
hello_button.clicked.connect(SigC::slot(this,&HelloWindow::saU

y hello));
bye_button.clicked.connect(SigC::slot(this,&HelloWindow::say gU

oodbye));
}

void HelloWindow::say hello(void) {
cout << "Hello!" << end1;

}

void HelloWindow::say goodbye(void) {
cout << "Good bye!" << end1;
Gtk::Main::quit(); // Exit event loop

}

// The window is to be closed by the window manager:
gint HelloWindow::delete event impl(GdkEventAny*) {
Gtk::Main::quit(); // Exit event loop

// Return value true prevents the window being destroyed immediaU
tely
// after the return. (In this case, this would not actually mattU

er,
// because the program will then be ended in any event.
return true;

}

int main(int argc, char ** argv) {
// An instance of Main is created. It seeks through the commanU

d line
// elements and removes those which are processed by the Toolkit.
Gtk::Main kit(argc, argv);

// Create and display an instance of the application window.
HelloWindow hello("Hello,", "World!","Good" "\n" "bye!");
hello.show();

// Event loop. The callbacks are called up from this function.
kit.run();

return 0;
}

Listing 2: hello.cc -- "Hello World" for Gtk--

066gtk.qxd 21.11.2000 17:06 Uhr Seite 70

PROGRAMMINGUSING GTK

4 · 2001 LINUX MAGAZINE 71

class hierarchy of Gtk+. Your own classes can be
derived from these classes by inheritance with no
problem.

Type safety at compile time is a declared aim of
Gtk--. For callbacks the signal-slot system of the
library libsigc++ (see box) guarantees type safety.
This system was initially developed as a part of Gtk--
and can now be used independently of it.

It is intended that Gtk-- should remain as slim as
possible, but it should not be too thin. If the API of
Gtk+ can support a C++ specific improvement, this
will be implemented. Examples of this are the
consistent use of std::string instead of char *, and
the possible use of the Standard Template Library's
container API for every type of container in Gtk.

Hello World

It's time for the obligatory example program. Listing
2 shows a complete "Hello World" program for
Gtk--. A screen shot of this can be seen in Figure 2.

The program is compiled using:

g++ gtkmm-config --cflags \
--libs -o hello hello.cc

There are a number of points of interest in the
source code:

Packed in the container

At no point in the source code is the size of widgets
(in pixels) specified. In Gtk, container widgets are
always just sufficiently large enough to
accommodate the widgets contained in them. The
widgets located in a container in turn, as a rule,
expand so that they take up all the space which the
container provides for them.

In the example, this means: "The button with
the text 'Hello' is just large enough to be able to
accommodate the label, whose size is determined
from the font and the contents. The HBox which
contains this button and the label next to it must
now be at least as high as the button. The button
fills the entire height of the HBox and is placed at
the centre of it. The width of the HBox is
determined from the widths of the button and the
label. Because this HBox is inserted into a VBox,
the VBox must also have at least the same width.
The button with the inscription "Good bye!"
contains a two-line label and is therefore taller
than the other widgets. It occupies the full width
of the VBox.

If the user now enlarges the window displayed
by the program, the widgets automatically take the
additional space. There are still a few refinements
which can be done differently when packing the
container in order to achieve specific effects, but
there isn't the space to go into greater detail here.
Refer instead to the Gtk-- Tutorial on the Web,
which describes in detail how widgets are packed in
boxes and presents all the other containers.

Dialogs

In Listing 2 all the widgets of the program are
defined as data members of one class, this class
being derived from the Window class. Because it is
easy in C++ to derive a new class, this is the
recommended method for creating a dialog. All the
widgets of a dialog, or, if the dialog becomes too
complex, all the widgets of a logical sub-unit of the
dialog, are contained in one class. This class is
derived from the container widget which contains
all the other widgets.

For a complete dialog, then, you can derive a
class from a Gtk::Window. It is possible, for
example, to derive part of a dialog based on an
index card widget (Gtk::Notebook) from a box or a
table (Gtk::Table) if all the other widgets are located
within this box or table. In this way you can create
specialised dialog widgets with the desired
functionality. The file selection dialog supplied with
Gtk, for example, was created in this way (although
at the level of Gtk+.)

If the new classes contain all the other widgets
as data members, as in the example program, they
can become very large. The size can be problematic
in low-memory situations if the address space of the
process is fragmented and there is no sufficiently
large single memory area available to create an
instance of the class. One way out of this is to work
with pointers to the widgets instead of with the
widgets themselves, creating these dynamically in
the constructor and destroying them again in the
destructor.

Gtk-- (or libsigc++) provides a mechanism which
makes the handling of the dynamically created
widgets much easier: the function manage(). Many
widgets, once they have been created and placed in
a container, are no longer referred to in the source
code of the program. In this case, instead of storing
a pointer to the widget just in order to be able to
destroy it again later, this task can be left to the
library. If you give the function manage() a pointer
to a widget, it will be marked in such a way that it
will automatically be deleted by the library when the

066gtk.qxd 21.11.2000 17:06 Uhr Seite 71

container which holds the widget is destroyed.
manage is defined in $PREFIX/include/sigc++/object.h
(read in automatically from the Gtk– header files) as
template <class T> T* manage(T*), so there may be
no need to store a pointer to the object created
temporarily in the constructor.

somecontainer.add(*manage (new Gtk::SomeWiU
dget(/*…*/)));

inserts the newly created widget directly into the
container. A version of the "Hello World" program,
which uses manage is provided on the CD with this
issue of the magazine.

Callbacks

For callbacks, the signal-slot system of the library
libsigc++ was developed (see the box "libsigc++").
The widgets react to user interaction by emitting
signals. The button, for example, contains a signal
such as Signal10<void> clicked, which is sent when
the user clicks the button using the left-hand mouse
button. In Listing 2 in the constructor of
HelloWindow, the last two statements connect
these clicked signals with other methods of the
class.

There is yet another way of calling up callbacks:
virtual methods. Each widget in Gtk-- which can
emit a signal also contains a virtual method which is
called up each time this signal is emitted. The name
convention for these methods is <signalname>
impl.

If you are interested in a signal from a widget
from which you are deriving a new class it may be
simpler to override this virtual method in order to
obtain the desired functionality. Unlike with signals
and slots, event and reaction are then securely
coupled to one another. This might impair the
reusability of the derived class. In the example
program the method delete event impl is overridden
in this way such that the program is terminated
when the user closes the window.

If methods are overridden it is important to take
account of the fact that important functions of
Gtk-- are carried out in these methods. It may
therefore be necessary to call the corresponding
method of the parent class explicitly from an
overridden method in order for everything to work
as it is supposed to. If you don't want to look into
this any further, take it as a general rule of thumb to
end the names of methods with * event impl in
order to call the method of the parent class.

With style: Styles

An object of type Gtk::Style is allocated to each
widget, which determines the appearance of the
widget. As a rule, several if not all the widgets share
the same style object. You should never change the
style of a widget if you don't know which other
widgets are also using this style.

New styles can be created by copying an
existing style using Gtk::Style * Gtk::Style:Copy()
const or creating standard style using static
Gtk::Style * Gtk::Style:Create(). In the new style you
can then change colours and fonts before assigning
it to other widgets.

The colours which a style defines are principally
foreground colour ("fg"; for widgets with editable
text "base") and background colour ("bg"; for
widgets with editable text "text"). A widget can
adopt different states. For each state, each of the
colours can be different. GTK_STATE_NORMAL
denotes the basic state; with GTK_STATE_PRELIGHT
the mouse pointer is located above the widget, as is
the case with GTK_STATE_ACTIVE, although in this
case the left-hand mouse button is also pressed. In
addition to this, there is GTK_STATE_INSENSITIVE
and GTK_STATE_SELECTED.

It is possible to play around with styles, colours
and fonts in the program. This would mean that the
colours and fonts would be hard-coded. There is a
simple mechanism in Gtk which allows the
appearance of the widgets to be determined at run-
time: gtkrc files. Using these files, users are given
the ability to change the look of programs to suit
themselves.

Self-determination for all!

In gtkrc files you can define "styles" and then assign
them to a group of widgets. Styles are defined here
as follows:

style "<name>" [= "<optional other sty
le name>"]
{ … }

where … is a selection of instructions:

bg[<state>] = {<r>,<g>,}
fg[<state>] = {<r>,<g>,}
base[<state>] = {<r>,<g>,}
text[<state>] = {<r>,<g>,}
bg pixmap[<state>] = "<xpm filename>"
font = "<fontname>"
fontset = "<fontnames>"

<state> designates one of the widget states;
possible values are NORMAL, PRELIGHT, ACTIVE,
INSENSITIVE and SELECTED. <r>,<g>, are colour
values between 0.0 and 1.0. It's important to
ensure that a decimal point appears in the values
otherwise the value will not be recognized and zero
will be used (i.e. write 1.0 and not 1). Xpm-files are
sought in directories specified by:

pixmap path = "<directory1:directory2:dirU
ectory3...>"

at the start of the gtkrc file. Finally, styles defined in
this way are allocated to a group of widgets. The
following assignments apply:

class <classname> style <stylename>
widget class <class path> style <stylename>
widget <path> style <stylename>

PROGRAMMING USING GTK

72 LINUX MAGAZINE 4 · 2001

066gtk.qxd 21.11.2000 17:06 Uhr Seite 72

In the above, <stylename> is the name of a defined
style and <classname> is the name of a class to
which a is a designation pertains.

Examples of class names are "Button" or
"Widget". <class path> is a list of exact class
names, separated by dots, of the containers in
which a widget in this sequence is contained (for
example "Window.HBox.Button.Label"). A <class
path> usually starts with "Window.*". <path> is
the same as <classpath>, unless a name has been
given to one of the widgets using the method set
name(), in which case this name should be used in
the <path> instead.

The class names "Button", "Widget", etc. are a
feature of Gtk--. The corresponding class names of
the Gtk+ widgets in a C program are "GtkButton",
"GtkWidget" and so on.

<class name>, <class path>, and <path> may
contain the wildcards * and ?.

Putting it to use

If you intend that a widget should be able to be
configured in this way, a name which is as
unambiguous as possible should be allocated to it in
the program, for example:

my button.set name("Hello Button");

In the gtkrc file, which is provided with the
program, the desired style is defined and the button
allocated to it:

style "hello button style" {
bg[PRELIGHT] = { 0.9, 0.2, 0.2 }

}
widget "*Hello Button" style "hello button stU
yle"

The asterisk here is a wildcard for all containers
which might contain the button. A style is allocated
to a widget at the moment at which its set name()
method is called, or when it is packed into a
container. Before this happens, the program must
read in the desired gtkrc file:

Of course, the documentation for the
application will need to specify which widgets have
which names so that the user knows what to
change in the gtkrc file in order to obtain the
desired result. Refer to the GNOME developer web
site for more information on gtkrc files.

More documentation

There are more than 80 widget classes in Gtk– and
the Tutorial makes an effort to present all of them.
In this article that is unfortunately not possible.
Anyone whose appetite has been whetted by this
article should read this Tutorial as the next step.

What other documentation is there? First, there
are the reference pages which are automatically
produced when installing Gtk--. This reference is
unfortunately still very incomplete. After installation

it is found under <gtkmm-source>/docs/gtk/class
index.html. There is also an example program for
almost every widget which demonstrates its use.
The example programs are located under <gtkmm-
source>/examples.

Because Gtk-- is just a wrapper it is possible to
make something of a start with the documentation
for Gtk+. The book "Gtk+/Gnome Application
Development" by Havoc Pennington is also worth
having. It can be downloaded or read on the Net,
though we would recommend buying a copy of the
printed version.

The book "Developing Linux Applications with
Gtk+ and Gdk" by Eric Harlow is rather heavy going
but there are a number of low-level situations which
it explains well. Before buying a copy, be sure to
leaf through it carefully to get an overall impression,
because the start of the book is really intended for C
programmers and has nothing of direct relevance to
Gtk+.

It is often helful to take a look at existing
applications which use Gtk--. Terraform is a
program for creating fractal landscapes and
cardwords is a crossword puzzle game. Other
application examples can be found on the Web.

Gtk-- is not only usable, it is being used. The
project has been around for almost as long as
Gtk+ itself. It has come a long way from its
origins as a simple mapping of all the C functions
of Gtk+ to become a sophisticated wrapper
without which you will never want to use Gtk
with C++ again. ■

PROGRAMMINGUSING GTK

4 · 2001 LINUX MAGAZINE 73

Info

Homepage of Gtk--: http//gtkmm.sourceforge.net/
Homepage of Vdk: http://vdkbuilder.sourceforge.net/vdk.html
Homepage of wxWindows: http://www.freiburg.linux.de/-wxxt/
Homepage of V: http://www.objectcentral.com/vgui/vgui.htm
Homepage of Qt: http://www.trolltech.com/products/qt.html
For compatibility of QPL and GPL:
http://www.gnu.org/philosophy/license-list.html
Homepage of Fltk: http://www.fltk.org/
List of X11 libraries:
http//sal.kachinatech.com/F/5/index.shtml
List of GUI libraries: http://atai.org/guitool/
Homepage of Abiword: http://www.abisource.com/
Homepage of libsigc++: http://libsigc.sourceforge.net/
Tutorial for Gtk--:
http://gtkmm.sourceforge.net/tutorial/tutorial.html
gtkrc:
http://developer.gnome.org/doc/API/gtk/gtk-resource-files.html
Havoc Pennington: "Gtk+/Gnome Application Development"
http://developer.gnome.org/doc/GGAD/GGAD.tar.gz
Homepage of Terraform: http://terraform.sourceforge.net/
Homepage of cardwords: http://www.crosswinds.net/-cardwords
Other example applications:
http://gtkmm.sourceforge.net/extra.html#applications

■

066gtk.qxd 21.11.2000 17:06 Uhr Seite 73

