
PROGRAMMING MIDGARD APPLICATION SERVER

74 LINUX MAGAZINE 4 · 2001

Dynamic websites
with Midgard

PHP
INSIDE

JOCHEN LILLICH

Modern websites need to have comprehensive and,
most importantly, up-to-date information – not just
a pretty lot pictures and some boring text. PHP has
established itself as a powerful language in the
development of database-enabled websites, but
you’ll soon find that performing even routine
functions can be a real pain. Indeed, editing text
and other database contents, creating templates for
separating content and layout, and creating
interfaces for updating the database and so on
require you to do a great deal of work. These basic
functions are therefore often achieved via some
form of middleware that sits between the database
and the web application. One fairly new
representative of such an application server, as it’s
often known is Midgard. This was written just over
a year ago as the basis of an editorial system for a
Finnish online magazine, hence its Norse
mythological name. Since then, Midgard has
become an international Open Source Software
Project and is developing rapidly. Have a look at
http://www.midgard-project.org for more details.

Teamwork

Midgard is an expansion of the widely-used LAMP
combination: Linux (L) as operating system, Apache
(A) as webserver, mySQL (M) as database and PHP

(P) as programming language. Midgard adds
important building blocks to this combination by
providing PHP with a pre-defined, yet expandable,
data model. This data model splits the individual
applications of a Midgard server into ”Hosts”, in
”Styles” and ”Groups” data. ”Content” refers to
he actual information required from a website. For
this Midgard supports text (raw text or HTML),
calendar entries and binary data. ”Styles” are freely
definable style and page elements. This means there
is complete separation in Midgard between
application logic, contents and layout. Which users
can process which parts of these is defined in
”Groups”, the management of user accounts and
user groups.

Installation steps

Before installing Midgard you should already have
an Apache webserver and a my SQL database
running on your system. As Midgard brings with it
an expanded PHP3, any PHP module already
installed for Apache must first be removed.

From http://www.midgard-
project.org/download/ you’ll need to download the
midgard-data, midgard-lib, midgard-PHP and
mod_midgard packages. These should each be
unpacked, compiled and installed in a working
directory.

The Library Midgard-lib contains the basic
Midgard functions and is installed as follows: The
parameter ”--with-mysql” should now refer to the
directory in which the Include files and Libraries of
the database can be found.

Modern websites are dynamic – their contents come from

databases, not just static HTML pages. Midgard Web

Application Server is designed to help you create just such a

site and will save you a lot of boring programming

074midgard.qxd 22.11.2000 9:52 Uhr Seite 74

tar xvzf midgard-lib-1.2.5.tar gz
cd midgard-lib-1.2.5
./configure --with-mysql=/usr
make
make install

mod_midgard adds a Midgard interface to Apache.
The configuration parameter ”--with-apache”
refers to the configuration directory of the
webserver, and ”--with-midgard” indicates where
the Midgard libraries have been filed.

tar xvzf mod_midgard-1.2.5.tar.gz
cd mod_midgard-1.2.5
./configure--with-apache=/etc/httpd \
--with-midgard=/usr/local
make
make install

midgard-php now contains the new PHP functions.

tar xvzf midgard-php-1.2.5.tar.gz
cd midgard-php-1.2.5
./configure --with-apxs=/usr/sbin/apxs \
with-mysql=/usr \
--with-idgard=/usr/local --enable-

tracks-vars \
--with-system-regex
make
make install

To enable the connection between Midgard and the
Apache webserver, the configuration file normally
found in /etc/httpd/httpd.conf has to be expanded
by a few lines (see box). Some of these new lines
should already have been added by the procedure
we’ve already outlined, but do make sure that these
have been entered at the right place and not, for
example, in an/ifdef/block.

Finally we need to deal with the Midgard
database and the websites (see box).

After a new log-in to the database, using the
command mysql -u midgard -pmidgard midgard,
this time as user ”midgard”, we enter the two
webhosts:

mysql> update host set name=’localhost’,
online=1, port=8101 \
where id=1;
mysql> update host set name=’localhost’,
onlne=1, port=8099 \
where id=2;

All that is left now is to copy the webserver data.
The file midgard-root.php3 specifies the basic
structure of a Midgard page and should be moved
into its own directory:

mkdir -p /usr/local/midgard/root
mv /usrlib/apache/midgard-root.php3 \
/usr/local/midgard/root/

Using cp -r htdocs /usr/local/midgard/ we can then copy
the graphics for the pre-installed Midgard sites and start
the Apache server again, but that’s it. All being well, you
should find sample website http://localhost:8099 and an
administration website at http://localhost:8101.

For access to the latter you need to enter a user name of
”admin” and a password of ”password”.

Now the fun starts

To show you how the whole thing works, let’s
create a simple dynamic site – a Midgard Club
homepage. Our ”Club for Midgard Users”, CMU
for short (you can guess why we didn’t opt for
Midgard User’s Club as a name), wants to provide
general information about itself, news about the
club and the dates of special events.

PROGRAMMINGMIDGARD APPLICATION SERVER

4 · 2001 LINUX MAGAZINE 75

Midgard expansions in the httpd.conf
LoadModule midgard_module libexec/mod_midgard.so
LoadModule php3_module libexec/libphp3.so
LoadModule midgard_module libexec/mod_midgard.so

AddModule mod_php3.c
AddModule mod_midgard.c

AddType application/x-httpd-php3 .phtml .php3 .php

DirectoryIndex ndex.html index.shtml index.php3 \
index.phtml index.php

MidgardEngine on
MidgardRootfile /usr/local/midgard/root/midgard-root.php3

<Directory /usr/local/midgard>
Order allow,deny
Allow from all
</Directory>

<Directory /usr/local/midgard/oot>
require valid-user
AuthName Midgard
AuthType Basic
</Directory>

NameVirtualHost localhost:8101
Listen localhost:8101
<VirtualHost localhost:8101>
ServerName localhost
Port 8101
DocumentRoot /usr/local/midgard/htdocs
</VirtualHost>

NameVirtalHost localhost:8099
Listen localhost:8099
<VirtualHost localhost:8099>
ServerName localhost
Port 8099
DocumentRoot /usr/local/midgard/htdocs
</VirtualHost>

Instllation of the Midgard database
$ tar xvzf midgard-data-1.2.5.tar.gz
$ cd midgard-data-1.2.5.tar.gz
$ mysqladmin create midgard
$ mysql midgard < midgard.sql
$ mysql mysql
mysql> insert into user (host, user, password) \
values (‘localhost’, ‘idgard’, password(‘midgard’));
mysql> insert into db (host, user, db, select_priv, \
insert_priv, update_priv, delete_priv) \
values (‘localhost’, ‘midgard’, ‘midgard’, ‘y’, ‘y’, ‘y’, ‘y’);

mysql> flush privileges;

074midgard.qxd 22.11.2000 9:52 Uhr Seite 75

The club’s committee are an impatient lot, so
let’s get straight down to business and use our
browser to call up the Midgard admin-site,
http://localhost:8101. As you’ll see, navigation is
easy and detailed information just about everything
is available (see Figure 1).

We’ll start by setting up some users – this is
easily done using the ”New Person” option. Next
we’ll set up a new group for the administrators of
the site using the ”Group Administration” option.
Having selected this option, clicking on ”New
group” displays an input form in which we can
enter information about the administrator group.
As a name, we’ll select ”CMU-Admis”, and at the
bottom, in the member list, we can allow any or all
the people we set up previously who we want to act
as administrators.

Since the layout defines important elements of
our new club site, the next thing to do is establish a
main style that will apply for the entire website. This
is made easy for us thanks to the ”New top level
style” option in ”Layout Administration”. We only
have to give it a name, so it seems sensible to select
”CMU-Layout”.

Now we need to define a new host for the
application logic. To do this, we go to ”Host
Administration” and click on ”New host”. Let’s
name our host ”CMU-Site” and specify that it
should be accessible on local host, Port 8110. We
set the status to ”online” and the authentication to
”not necessary”. As owners of the site we also
select the ”CMU-Admins” and the style ”CMU-
Layout”. The ”Root Page”, in other words the start
page for our application, is created from new with
”new root page”. This then also gets named
”CMU-Site”.

We also, of course, have to attach this new host
to the Apache server. To do this, before restarting
the server, edit /etc/httpd/httpd.conf as follows:

NameVirtualHost localhost:8110
Listen localhost:8110
<VirtualHost localhost:8110>
ServerName localhost
Port 8110
DocumentRot /usr/local/midgard/vnm
</VirtualHost>

We’ll also want to change the sample information
pre-configured in the Root Page, and to do this we
just click on the ”Modify” link. Here we’ll change
the title to ”Welcome to the CMU!” and enter the
content from Listing 1.

Now we come to the content; on the starting
page, represented by the Midgard Root Page, we
offer links to club info, news and events. All these
contents can be filed, thanks to the comprehensive
data model, as normal Midgard articles. Midgard
organises articles hierarchically into ”Topics” and in
this way builds a contents tree. Let’s create such a
tree called ”CMU-Content” owned by ‘CMU-
Admins” in ”Content Administration” using the
”New top level topic” option. We can then set up

the three main topics – ”Info”, ”News” and
”Events”, as a New subtopic” under ”CMU
Content”. Other settings can be kept the same as
the parent topic using the ”same as parent” option.
At this point we can start filling the individual topics
using the ”New article” option. In the article fields,
bear in mind that the title entered will later appear
as the title of the HTML page, but the name has
merely internal significance. For the articles on
events, the fields ”Start date” and ”End date” can
be used in order to show the start and end of the
event. By entering to or three articles per topic, you
can get yourself a bit of practice in handling the
administration interface.

All we need do now is program the application
logic, which ensures that our carefully updated
contents also appear in the appropriate places of
the website.

To this end we’ll set up the sub-pages to which
the links from the root page refer to, in each case as
a ”New subpage”. As a name, the respective link
name should be entered ”info”, ”news” or
”events”. For the title we can enter meaningful
phrases, and again we can inherit the style from the

PROGRAMMING MIDGARD APPLICATION SERVER

76 LINUX MAGAZINE 4 · 2001

Listing 2: Display of current events
<?
if ($article) {
?>
<h1>&(article.title);</h1>
<p>&(article.alcalendar);<p>
<p>&(article.abstract);</p>
&(article.content:h);

<?
} else {
?>

<h1><(title)></h1>

<!— Sort events by calendar date —>
<?
$calendar = mgd_list_topic_calendar_all(17);
if ($calendar) {
while ($calendar->fetc()) {

?>
<p>
&(calendar.acalendar);

&(calendar.title)
;

&(calendar.abstract);
</p>

<?
}

}
}
?>

Listing 1: Starting page
<h1>Welcome to the CMU!</h1>

<p>info</p>
<p>news</p>
<p>events</p>

074midgard.qxd 22.11.2000 9:52 Uhr Seite 76

parent site. As we want to use some PHP for these
pages, in order to read the events from the
database, for example, we must set the type to
”active”.

With us so far? Good. Now, using the events
page, we can learn about programming with
Midgard: The content of the events page ”events”
is to be taken from Listing 2.

In this code, a check is first made as to whether
the object is defined as an $article or not. If it is,
some HTML is created from its fields ”title”,
”alcalendar” and ”abstract”, in order to display the
appropriate article. ”&(object.field);” is the Midgard
syntax for quickly calling up information on a
Midgard object. In article.content ”:h” has also
been appended in order to show that this field
contains HTML, which must be interpreted by the
browser. Without an ”:h” the field content would
be displayed word for word, including the
HTMLtags.

On opening the ”Events” page the user should
be given a list of events to choose from, so he has
yet to select any specific articles. In this situation the
else-branch is executed. Next, the page title, as
entered in the host administration, is displayed.
After that all calendar contents are queried under
the topic ”Events”:

$calendar = mgd_list_topic_calendar_all(17);

The parameter ”17” is the numerical identifier
of the topic ”Events”. Such identifiers are created
when topics and articles are created and therefore
differ depending on the user. The correct identifier
can be found by displaying the corresponding topic
in the content administration.

With the while loop, we now get $calendar to
show us articles. Using $calendar->fetch we then
call the next article and output its ”acalendar”
(date) and ”title” fields, using a link to an URL
consisting of its ID with the suffix ”.html”.

So, if the user clicks on ”/events”, on the link to
the event with the ID ”22”, the page
”/evnts/22.html” will be queried. Midgard reacts to
this by again calling the active content of the page
”events”, but this time with the additional
parameter ”22”. The next step is therefore to
ensure that article No. 22 is retrieved and its data is
filed in the object $article mentioned above. We file
the logic necessary for this in a page element of the

PROGRAMMINGMIDGARD APPLICATION SERVER

4 · 2001 LINUX MAGAZINE 77

Figure 1: Simple
administration by web
browser

Listing 3: code-init
<?
if ($argc == 1) $id = $agv[0];
if ($id && !mgd_is_article_in_topic_tree(17,U
$id)) $id = 0;
if ($id) $article = mgd_get_article($id);
if ($article) $author =
mgd_get_person($article->author);
?>

074midgard.qxd 22.11.2000 9:52 Uhr Seite 77

site ”Events” named ”code-init”. This page element
is always executed before the actual page content is
dealt with (see midgard-root.php3) and can
therefore pre-process $article. To store the page
element we click on the Host Administration of the
page /events on ”New page element” and enter the
title ”code-init” and the content from Listing 3.

First we check whether a parameter is available
and store this in $id. For security reasons a check is
then made as to whether this ID does in fact belong to
an article from the part-tree ”Events”. If everything is
correct, the function mgd_get_article ensure that its
data is retrieved and stored in the object $article. The
data on the article’s author is filed in $author.

And that’s it! A visitor to our site will find a list
of our events and at a click of a button can get
further information. The calendar logic of Midgard,
by the way, automatically drops events on dates
prior to the current one. So now all we’ll ever have
to do is regularly update the events using content
administration, so that the homepage of our club is
always able to provide the latest information.

The pages for information and news of our club
can be created in a similar manner to the events
page but will use a different topic ID.

As you can plainly see, developing dynamic
websites with Midgard is really easy: Once you get
used to web administration, creating a website from
database contents and a separate layout will take
you very little time. And if topic or article structure
provided suffices for your own purposes, you won’t
even have to worry about even one single SQL
instruction, sidestepping a potential trouble-spot.

Having said we’ve finished, though, we have to
admit that our site is a bit lacking in style. This is

what Layout Administration is for (Figure 2),
though, and we’ll leave it to you to create
something individual for your CMU test site. In
doing so, note that layout can, starting from the
ROOT” element, be broken down into building
blocks known as „Style elements”. Subordinate
elements are then simply integrated in the form
<[element]>.

Midgard evolution

In order to prevent Midgard’s data model from
acting as a restriction, the Midgard development
team is currently working on a data model that
can be expanded as required. The current
developer versions already contain support for
inary data (BLOBs) and sophisticated calendar
management (for example for assigning people to
events).

If several Midgard hosts are running on one
server they must each be administered separately.
After all, a host administrator or even a customer
should only be able to access his own data. With
the site group concept, which made its debut in
Version 1.4 beta, this is now possible without any
problems.

Another task that the Midgard developers are
working on is a universal database interface. While
Midgard at present only supports mySQL, for
Version 2.0 of the application the choice is expected
to be extended to cover a wide variety of databases
and even other backends, such as LDAP.

This is all very exciting, and also very useful, so
this Web Application Server undoubtedly has a very
interesting future ahead of it. ■

PROGRAMMING MIDGARD APPLICATION SERVER

78 LINUX MAGAZINE 4 · 2001

Figure 2: A
wide range of layout

styles can be
used with Midgard

074midgard.qxd 22.11.2000 9:52 Uhr Seite 78

