
BEGINNERS COMMAND LINE

Linux is capable of multitasking – in other words, a
number of programs or processes can be executed
by the processor at the same time. These processes
are not actually dealt with simultaneously though;
they are actually allocated a bit of computing time
(a few fractions of a second) one after the other.
The impression given however is that all the
programs are running at the same time. This series
is concerned with the management of processes
and with tools which help you to do this.

Monitoring processes

You can find out which processes are running on
your Linux system at any given moment using the
command ps. If you type ps x, all processes currently
running will be displayed:

chicken@asteroid:~$ ps x
PID TTY STAT TIME COMMAND
353 ? SW 0:00 [.xsession]
380 ? S 0:00 /usr/bin/ssh-agent /U

home/chicken/.xsession
...
391 pts/1 SW 0:00 [bash]
392 pts/0 S 0:00 -bash

...
16798 pts/5 S 0:00 ./zombie
16799 pts/5 Z 0:00 [zombie <defunct>]
...
16802 pts/0 R 0:00 ps x

Here you can see various pieces of information at a
glance: the PID (Process Identification), the terminal
in which the process was started, and the present
status or condition of the program. The letters
beneath STAT are fairly simple to understand: S
means "sleeping", R means "running", SW means
that the process is not only "asleep", but has also
been moved out into the SWap memory . You can
also tell this from the square brackets ([]).

Any process which is currently running must be
in the RAM. If there isn't enough memory for the
active processes, programs which are not currently
running can be moved out into the Swap memory
to make room for others. The obvious first choices
for swapping out are the processes which are
"sleeping" anyway and aren't actually doing
anything.

In the list, you can also see another status flag:
Z. This stands for "Zombie". A Zombie process is
one which has stopped but has so far been unable
to give back its return status to its parent process .

Apart from S, R, SW and Z there are some more
letters which describe the current status. For
example, if there is a D there, this is a process which

104 LINUX MAGAZINE 4 · 2001

Take command

AN INTRODUCTION
TO PROCESSES

PS, KILL AND
CONSORTS

BY HEIKE JURZIK

Even if lots of things can easily be controlled using

graphical interfaces like KDE or GNOME, anyone

wanting to get the most out of his Linux system cannot

avoid using the command line. Apart from that, there

are also many other situations where it's a good thing

to know your way around the jungle of command lines.

104cmdline.qxd 22.11.2000 10:35 Uhr Seite 104

BEGINNERSCOMMAND LINE

can no longer be "awoken" again. This type of
thing can happen if the intention is to write into a
file which is on a system mounted via NFS which has
crashed in the meantime.

You can stop and restart your own processes
yourself. Of course, you can't interfere with system
processes, but if you want to stop a program, you
can do it using kill -STOP PID (kill -19 PID). If the
process is meant to continue to run, it is possible to
convince it to do so using kill -CONT PID
("continue") (kill -18 PID) . A practical example: If,
as root you wish to stop the gpm ("general purpose
mouse" – mouse support on the console), you
should first look for the process number (e.g. with
ps x | grep gpm), then invoke kill -STOP PID . This
process is now given a T as its status flag, which
stands for "traced".

In the background, too – the
shell as process manager

The shell receives inputs on the command line and
decides whether these are internal commands or
external programs. External programs are started as
new processes. To the extent that these are
dependent on keyboard inputs and screen outputs,
they temporarily replace the shell in the terminal.
For example, if one starts the program ncftp, this is
in the foreground and receives the commands typed
in. It is only when the program is ended that the
shell comes into use again.
There are, of course, also programs which are not
dependent on user inputs. If you want to carry on
working in the shell, you can use "program & to"
put the program into the background immediately.
If the program is already running, the key
combination [Ctrl+Z] and the following command
bg (short for "background") have the same effect.
With fg (short for "foreground"), it runs in the
foreground again. Here's another trick: You can also
put several programs into the background. If you
then type in jobs, you will be given details of
everything that's going on behind the scenes of the
shell:

chicken@asteroid:~$ jobs
[1]- Running xkoules &
[2]+ Running xskat &

Here you can see directly, as the first piece of
information, the internal job ID (which is issued
separately by each shell). This means the jobs can be
managed, e.g. pushed individually into the
foreground or background. Using the command fg
1 you can for instance bring xkoules back to the
front. This feature is a hangover from the days
when you'd have to work at a single terminal. If
there were two interactive programs, this was of
course much easier to handle – you could for
example put a text editor into the background while
compiling the edited program, instead of shutting it
down.

Not a forest, just one tree

The command ps obviously has any number of
options with which you can control various
selection options or properties. For example ps au
also shows the processes of other users which are
linked to some terminal or other. The u in this case
ensures that additional details are displayed,
including among other things the name of the
process owner:

USER PID %CPU %MEM VSZ RSS TTY STU
AT START TIME COMMAND
root 307 0.0 1.0 1996 672 tty1 S U

16:58 0:00 -bash
...
chicken 1427 0.0 1.5 2272 1000 pts/3 SU

17:04 0:07 vim befehl
...
easter 16914 8.3 1.5 2628 988 pts/5 RU

23:44 0:00 ps au

This also makes it clear what the current computing
time percentage is (under %CPU), the proportion of
memory (%MEM) or the time when the program
starts (START); in older processes, instead of the
time, the started date is displayed. With ps r only
the processes running are displayed, and with ps U
username, only those of a specified user. Another
useful option is ps l (with "l" as in list), which
enables you to find out something about the PPID
("parent process ID"). However a nicer overview of
which process stems from which parent is delivered
in a tree view, using the command pstree:

chicken@asteroid:~$ pstree
init-+-atd

|-bash
|-cron
|-kdm-+-XF86_SVGA
| `-kdm---.xsession-+-fvwm2
| |-ssh-agent
| |-xclock
| |-xeyes

...

This type of overview can also be produced using
ktop from KDE (see Fig. 1), if you have clicked on
the option show tree .

ps offers so many parameters that it is not
possible to list them all here. Take a look at the man
page and "knit" your own output format. The
program top periodically conveys a useful selection.
For GNOME, too, there is top with a graphical
interface (see Fig. 2) with the practical additional
function Filesystems (free).

If you ever lose control over a process, you can
terminate it by force. This is where the command kill
comes into play. This can – as already mentioned –
send all possible signals to processes. There are
various signals for ending a process, which differ
from each other as to whether they can be ignored
or intercepted and processed by the process. With
kill -l (with "l" as in list) you get an overview of all
possible signals, including the ones used internally

4 · 2001 LINUX MAGAZINE 105

Swap memory: To enlarge
the total amount of memory
available, it is possible to
supplement the physical
working memory (RAM) with
special areas on the hard disk
called swap partitions or swap
files. These are made by root
with the command mkswap
(see also the man page on this
command).

Parent process: Every
process, with the exception of
the very first one (init), has
been started by another. This
other process is called the
parent process, and the newly
started one is called the child.
If the child has been
terminated, it gives back its
status to the parent. If the
latter has in the meantime
been terminated itself, the
reverse succession goes back to
init.

■

104cmdline.qxd 22.11.2000 10:36 Uhr Seite 105

BEGINNERS COMMAND LINE

by the system (e.g. SIGSEGV for the universally-
popular memory overwriter):

chicken@asteroid:~$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR111) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF28) SIGWINCH29) SIGIO
30) SIGPWR 31) SIGSYS

You've already met SIGSTOP and SIGCONT – and
there are two more which are of practical interest.
• With SIGTERM (15) you can "ask" a program to

terminate itself (it can still process the signal
internally).

• With SIGKILL (9) on the other hand the program
is unconditionally "shot down". This can be
achieved with either kill -9 PID or with the long
form kill -KILL PID .

• Also of interest is kill -HUP PID (kill -1 PID), to read
in modifications in configuration files again.

For example a kill -HUP on the inetd-PID forces the
Internet daemon to read in anew its configuration
file /etc/inetd.conf.

killall means you get them all...

As a rule you will not know the ID of a process
which you want to terminate: You see something
like a frozen Netscape window and would prefer to
close this using kill -9 PID . Equipped only with the
tools ps and kill, you must now first use

ps aux | grep netscape

to search for the process-ID of Netscape and
then include this in the kill command – but there is
a simpler way: a

killall -9 netscape

achieves precisely that (always assuming that
the running program is also called netscape and not
e.g. netscape-communicator). But be careful: This
will actually terminate all matching processes; so for
example killall bash shoots down all bash shells on
the computer – including the one in which you have
entered the killall command.

Nice try!

Now take another look at the output from top :
Here the letters NI appear at one point –
decrypted, this stands for "nice". With the
command of the same name, processes can be
assigned execution priority: Normal users can only
reduce the priority, but root is allowed to increase
it too. A program running at a lower priority is only
then given computing time if this is not required
by a process are started with a higher priority.
By default, programs with the nice value 0,
a value of -20 means top priority, +19 is the
lowest. If no value is stated, nice starts programs
with the value 10.

If you start top e.g. with nice top, you will see
for this process:

PID USER PRI NI SIZE RSS SHARE STAT U
LIB %CPU %MEM TIME COMMAND
17827 chicken 19 10 1168 1168 704 R N U
0 2.1 1.8 0:01 top

If top is intended to run at the lowest priority, you
take nice -19 top (for the highest level nice --20
top). If you don't like the double minus sign, you
can also use the option "-n" and write for instance
nice -n 19 ... or nice -n -20

The tools discussed here do of course have
more options besides those mentioned. In particular
ps can easily confuse you, because differing ps
versions are in circulation, with different options.
Should anything not function as expected, then – as
usual – the best thing to do is look in the manual. ■

[top]
Fig. 1: KDE's ktop offers
a nice illustration of the

tree structure

[above]
Fig. 2: gtop is GNOME's

front-end for process
monitoring

106 LINUX MAGAZINE 4 · 2001

104cmdline.qxd 22.11.2000 10:36 Uhr Seite 106

