
Multiprocessor systems can be used to great effect
in many ways (see box). In the simplest case, several
users are logged onto the same multi-processor
computer (via X-terminals, for example) and
running programs that are not themselves
optimised for multiprocessor machines. In such a
case the kernel scheduler must distribute user
processes optimally over its available CPUs. But if
the machine is only intended to deal with a single
task, its implementation must be done in parallel in
order to be able to make use of all the processors.

The Linux kernel offers two system calls for this;
fork() and __clone()

fork() creates one copy each of code, data and
stack elements of the process to be retrieved.
Communication between the processes can only
occur with the aid of shared memory and IPC calls –
both of which are complex and greedy for
computer time. For this reason, __clone() allows
child processes to run in the same address space as
the parent process, but each child needs its own
stack. Listing 1 shows a simple example of this. The
processes here follow notional parallel-running
“threads”.

POSIX Threads

The distribution of tasks is only the beginning:
Threads sometimes have to be able to synchronise
themselves, maybe to protect against accesses to
critical resources by other threads. This is done with
the aid of what's known as semaphores and
mutexes. To make the programmer's life easier,
Xavier Leroy has developed a Linux Thread Library,
the basic functions of which conform to POSIX
1003.1c. This implementation does have its
drawbacks compared to commercial Unix systems.
For a start, threads are suposed to display the same
process number (PID) in the process table as the
parent process (using the flag CLONE_PID), but the
Linux kernel doesn't withstand this, as large parts of

FEATURE SMP PRINCIPLES

80 LINUX MAGAZINE 4 · 2001

Symmetrical Multiprocessing under Linux

MORE
DILITHIUM

CRYSTALS
FOR THE

WARP DRIVE
BERNHARD KUHN

Despite the fact that amazingly fast

processors are now available,

some situations require more power

than even 1GHz or faster CPUs

can offer. The solution, of course, is to

link more than one CPU together.

More complex hardware arrangements

mean higher the demands on the

operating system and its

programmers, however, as you'll

find out here.

080smpbasics.qxd 21.11.2000 17:21 Uhr Seite 80

the system assume that each process number has
been issued only once – a minor, but significant
flaw. A much more serious problem is the fact that
threads are controlled as regular processes and
therefore have to be taken into account in every
kernel scheduling cycle. Other Unix systems allow
the POSIX Thread Library to administer the partial
tasks in the user space – with correspondingly lower
context interaction times (there is only one regular
process per processor and application). The Linux
kernel developers, however, have foregone this
performance-enhancing feature in favour of
stability: simpler implementation makes for more
robust code.

Kernel Threads for the user space

Apart from user space processes and threads, tasks
relating to the system can also be performed in the
address space of the kernel, where the context
interaction times are considerably shorter. In this case
there is no need to reprogram the memory
management unit. The “kernel applications” (for
example kflushd and kswapd) are in fact controlled in
the regular process table, but are given preferential
treatment – if there is work queuing for them.

Although spectacular performance is possible
using kernel threads, the kernel web server “tux
1.0” being a good example, “true” applications
should always be laid out as user space program for
the sake of system stability. In addition, as we've
mentioned elsewhere, the kernel thread API does
not conform to POSIX and thus makes it harder to
port applications.

Behind the scenes

Every processor has its own kernel scheduler,
which differs only slightly from that of a single
processor system. If one processor is always
more heavily loaded than another one, processes
are automatically redistributed. There are
patches to bind processes permanently to
processors, though. The rumor on the mailing
lists at the moment is that this “processor-set

FEATURESMP PRINCIPLES

4 · 2001 LINUX MAGAZINE 81

Symmetrical Multiprocessing or Cluster Computing?
Algorithms to run distributed processing in parallel are only half the story. It matters at least
as much whether lot of data is to be exchanged between the processing units or not. The
computer system needed for a computer animation, for example, might use what's known
as a “render farm”. This consists of individual computers linked by Fast Ethernet (a loose-
coupled cluster). A computer used for weather simulation is likely to be the completely
different, however. Because of the way finite element analysis works, massive
communication needs to takes place between processing nodes so such tasks can only be
run on multiprocessor systems. Indeed, since the node to node communications
requirements are so high, only multiprocessing supercomputers can handle this kind of job,
the Wildfire GS320 supercomputer, for example, offering node to node data transfer rates
of a stagering 51.2GB/s.
It therefore makes sense to use multiprocessor systems if the applications can actually be
run in parallel, but do not permit distribution over several computers. The classic Apache
Webserver is a good example of this: the parent process launches several child processes,
which wait for incoming HTTP requests and respond to these independently of each other.
This means that exactly as many queries can be processed at the same time as there are
processors available. This task could of course also be dealt with by a cluster of cheaper
single computers, but with an upstream load-balancer and downstream server for the
common database, performance can go through the floor: high I/O performance is also a
benchmark for a good SMP system.
Classic Unix systems are another good example of the domain of application for multiway
computers: many users can log onto a server and start their applications via an X-terminal.
The operating system itself then takes care of load distribution.

/* clone.c, compile with */
/* gcc -o clone clone.c -D_REENTRANT */

#include sched.h

int loop(void *arg) {
/* determine number of clones */
int x=(int)arg;

/* Closed loop */
for(;;) printf("%i\n",x);

};

main() {
/* Stacks for the clones */
void* stack1[4000];
void* stack2[4000];

/* activate clones */
__clone(loop,stack1+4000,CLONE_VM,1);
__clone(loop,stack2+4000,CLONE_VM,2);

/* Closed loop */
loop(0);

};

Listing 1: Clone Demo

080smpbasics.qxd 21.11.2000 17:21 Uhr Seite 81

scheduling” will get into the next developer
kernel (Version 2.5).

With the exception of the scheduler, by the way,
the processors share all the data structures in the
kernel. Unlike a single processor system, though,
the process structure in an SMP kernel contains two
additional items, these relating to the processor to
which the application was most recently assigned.

In addition to everything else, a protection
mechanism has to be in place in multi-CPU systems
for what's known as “critical areas”. Device drivers
in particular have such areas, which are simply code
fragments that, during their execution, access
system resources – the program sequence for
initialising a DMA transfer is a good example of this.
If this type of code fragment were to be run on
more than one processor at the same time, the
most likely outcome would be a system crash.

Giant Lock: the tale of the slow
Linux SMP
In kernel version 2.0, the protection of critical areas
was achieved by means of a simple trick: At any
time, only one processor was able to be active at
kernel level – other CPUs were temporarily
prevented from entering kernel mode (see Figure 1).
This “Giant Lock” mechanism had a particularly bad
effect on system performance when running I/O-
intensive applications since in such cases the
processes might need to be in kernel mode
especially frequently. For this reason mechanisms
were introduced in kernel 2.2 that only block a
processor if it wants to go into a critical area that at
that same moment is being processed by another
CPU.

Atomic Operations

One critical area, for example, is the manipulation
of a value. The C-Compiler will interpret the
instruction cnt=cnt+1 as follow: “Read value from
memory, add 1, then write value back”. If two
processors do this at the same time then there could
well be a problem, with the resulting value of cnt

FEATURE SMP PRINCIPLES

82 LINUX MAGAZINE 4 · 2001

Fig. 1: Comparison between Giant
Lock in kernel 2.0, Spin Lock in

kernel 2.2 and Read Write Spin Lock
in kernel 2.4 (see text).

Symmetrical multiprocessing in the Intel IA32
With only a few exceptions, all Linux platforms offer SMP support. The
essential basic features of the hardware requirements are covered in the
Intel Multiprocessor Specification (MPS) 1.4:
• Cache coherence
• Inter-processor communication
Cache coherence mean that a specific piece of data in the cache of any CPU
displays the same value. This means that if an altered value is written back
to the main memory, then the other processors, with the aid of the MESI
protocol (named after the four statuses Modified, Exclusive, Shared and
Invalid), check to see whether the data is in their cache and, if appropriate,
take on the new value.
The so-called “local APICs” take care of inter-processor communication:
each CPU has an Advance Programmable Interrupt Controller, and with its
help can trigger an “Inter Processor Interrupt” in another processor. This is
done in order to show that a new message is waiting for it (maybe to
initiate a re-scheduling). According to MPS v1.4 this means a maximum of
16 processors can talk to each other. In addition to this, an I/O-APIC
integrated in the host bridge announces peripheral interrupts queuing to
one or more processors.

MESI and APICs make for cache
coherence and exchange of

messages.

080smpbasics.qxd 21.11.2000 17:21 Uhr Seite 82

not being as expected. In order to prevent this
effect, assembler instructions an enable “atomic
execution”, which means the manipulation cannot
be interrupted. The code for the above example can
be found in the kernel file
/usr/src/linux/include/asm-i386/atomic.h:

static __inline__ void atomic_inc(atomic_t *v)
U{
__asm_ __volatile__(LOCK "incl %0"
: "=m" (v->counter) : "m" (v->counter));}

Source and target are in the memory and are
processed by only one command – so no other
processor has a chance to disturb the
manipulation.

Spin Locks: in the queueloop

Frequently, critical areas of a more complex nature
are executed as atomic operations, our DMA
transfer code sequence mentioned previously is a
good example of this. Each of these critical areas is
assigned what's known as a Spin Lock: If a
processor goes into a critical area, the lock is
(atomically) activated. If the lock was already
occupied by another processor, then the CPU
affected checks the lock continually in a program
loop, until the critical area has been left by the other
processor and the lock has been deactivated. The
processor does squander valuable computing time
in the queue loop, but normally the block is much
too short to make it worthwhile transferring other
tasks from the CPU.

Read Write Spin Locks

Very often, processors dealing with critical areas
only need to read data – this can obviously be
done by several CPUs at the same time: for this
purpose a rwlock is able to block only processors
which want to actively write in the critical area.
This fact was all but ignored by the driver
developers with kernel 2.2 and Read Write Spin
Locks were therefore seldom used. This was
remedied in 2.4 and therefore is another reason
the later kernel can offer better performance –
particularly in computers with eight or more
processors.

SMP in practice
The increase in speed brought about by the use of
several processors largely depends on the
application. In a dual-Celeron system, for example,
the Skyvase-Benchmark (pvmpov) runs some 60 per
cent faster than with just one CPU. With the kernel
compilation option MAKE=”make -j3” this can be
increased to as much as 90 per cent. Under some
circumstances two processors can, as the result of
caching effects, even end up being be more than
twice as fast as a single processor (see box - Cache
in on multiple processors).

Linux SMP has a great deal to offer and can
increase application execution speeds, particularly
server applications, to a greater extent than you
might think. Its development is far from over,
though, and you can expect to see enhencements in
future kernel releases that will make it even more
efficient. ■

FEATURESMP PRINCIPLES

4 · 2001 LINUX MAGAZINE 83

Further reading

Linux-Threads FAQ:
http://pauillac.inria.fr/~xleroy/l
inuxthreads/faq.html
Linux-SMP HOWTO:
http://www.irisa.fr/prive/dmen
tre/smp-faq/smp-howtohtml
Intel MPS v1.4:
http://developer.intel.com/desi
gn/PentiumII/manuals/

■

Mutexes, Semaphores and Status Variables
Mutexes
MUTual EXclusions serve to reserve resources exclusively for threads. By
doing this a mutex can only ever be acquired by a single thread – if
additional threads attempt to claim this mutex for themselves
(pthread_mutex_lock), they will be blocked until the current claimant
releases the mutex again (pthread_mutex_unlock). The fact that
acquisition occurs atomically (see later) also ensures that only one thread
can ever occupy a mutex at any one same time.
Condition variables
Condition variables serve to await the onset of specified conditions and/or
to display their fulfilment. They are therefore used to synchronise threads.
Condition variables are linked to mutexes in order to ensure that he
conditions can only ever be altered by one thread at a time. Modification
of the condition variables is reported to the waiting threads with
pthread_cond_broadcast() with the aid of pthread_cond_wait .
Semaphores
Semaphores (or lighthouses) are the more general versions of Mutexes and
condition variables. Unlike mutexes, semaphores don't just allow two
conditions (acquired/released), but as many as required, where the
following counting operations are allowed:
• atomic incrementing he counter by one followed by waiting until value

becomes zero again
• atomic decrementing the counter
Semaphores were originally developed to avoid the problem of “lost
signals”.

Cache in on multiple processors
In practice, one hundred per cent increases in performance in dual processor systems
compared to single processors ones are normally only achieved when running server
applications. In theory, however, it is even possible to more than double the speed. This is
because n processors have n times as much cache memory as a single CPU, and in cyclical
processes, this therefore makes displacement of data more unlikely. For example, each byte
of a 4 Mbyte field is to be increased cyclically by the value 1. If only one processor with one
megabyte of cache handles this task, then the fast buffer memory is practically ineffective.
But, if the task is distributed over four CPUs, then each processor keep its “Working Set”
completely in the cache and executes the operations at a corresponing faster speed.

080smpbasics.qxd 21.11.2000 17:21 Uhr Seite 83

