
There are two sides to the world of network security
– good and bad intentions. You're either wearing
the white hat or black hat. Usually, there's a gaping
chasm in between the two. Yet at the same time
they are more similar than most people would like
to admit. In any case they use the same tools.

Every security-conscious network administrator
will want to make use of a port scanner one day
and every hacker will be aware of the basic
insecurity of every TCP/IP network. This is why many
of them have a Network Intrusion Detection System
monitoring the LAN. In this article we are going to
take a closer look at two typical and frequently tried
and tested examples from each genre.

nmap – the dark side

nmap (for "Network Mapper") was developed by
the hacker "Fyodor" primarily to scan large

networks. It does, of course, also work for individual
hosts. Because of the large number of possible
scans and options, there are now almost always
several ways of going about the same thing.
Sometimes you need a "fast" scan, sometimes you
want to leave only minimal traces on the target
system. There again, it might be necessary to get
round a firewall, or scan for various protocols.

nmap details

The "TCP three-way-handshake", which forms the
foundation for all TCP connections, can be seen in
Figure 1. A connection is initiated by a SYN packet. The
other party responds with a SYN/ACK packet, to which
the party initiating the connection must then respond
with an ACK in order to complete the connection.
The types of scan supported by nmap are:
• TCP-connect() scan

Here the connect() system call of the operating
system is used, thus a connection is made in a
completely normal way. This is also the only type
of scan which does not require any root
privileges.

• TCP-SYN ("half open") scan
In this case a SYN packet is sent to the
corresponding port. If the response from the

KNOW-HOW NETWORK SECURITY

46 LINUX MAGAZINE 4 · 2001

snort and nmap – two sides of the same coin

CAIN AND
ABEL
RALF HILDEBRANDT

nmap is a port scanner, which can search a

target computer for open ports, and thus for

potential security loopholes. Snort’s task is to

counteract nmap. Snort is a daemon which

scans through a network for suspect

packages and logs them.

FIG 1: TCP three-way-handshake

046snortnmap.qxd 22.11.2000 12:00 Uhr Seite 46

target port is in the form of a packet with SYN
and ACK, then the port is open. In this case an
RST is sent, in order to prevent the connection
being made in the first place (hence the name
"half open"). An RST and ACK as response on the
other hand characterises a closed port.

• TCP-FIN, Xmas or NULL (stealth) scan
The fundamental idea behind a FIN scan is that a
closed port responds to a FIN packet with an RST.
Open ports, on the other hand, tend simply to
ignore the packet. This behaviour is necessary (in
accordance with RFC 793) for the correct
functioning of the TCP.
But even if a port is blocked by a packet filter, one
may still be sent back an RST packet – in this case
the FIN scan is wrongly reporting that any
number of ports are open.
A few systems (such as Microsoft) always send an
RST regardless of the status of the ports.
Therefore, with this type of scan, it is very easy to
differentiate Unix and NT machines.
In the case of a "full" Xmas scan all pre-defined
flags (FIN, SYN, RST, PSH, ACK and URG) are set.
The packet is decorated like a Christmas tree
(hence the name). A "simple" Xmas scan has only
FIN, PSH and URG set. According to RFC 793 the
target system ought to send back RST for every
closed port.
With a NULL scan all the flags are cancelled (not
set). According to RFC 793 the target system
ought to send back RST for every closed port.

• TCP ftp proxy (bounce attack) scan
This scan scarcely means anything any more
because it is based on a feature of the ftp
protocol which has by now been deactivated on
most servers.
In this case, a weakness of the FTP protocol was
exploited. Details can be found at
http://www.insecure.org/nmap/hobbit.ftpbounce
.txt
The user of this scan remains hard to locate for
the scanned computer, as he/she is, as it were,
hiding behind an FTP server which has a read-
write access directory (for example /incoming)
and which offers the proxy feature. Phrack 51
lists as possible server types wu-2.4(3), wu-
2.4(11) and FTP server SunOS 4.1.

• SYN/FIN scan with very small, fragmented
packets
Instead of sending packets directly, they are split
up into small IP fragments ("fragmented"). In this
way, the TCP header is spread over several
packets, so that it is harder for packet filters to
detect exactly what is going on. Obviously this
method cannot be used against firewalls, which
collect and then defragment the IP fragments (as
occurs for example through the kernel option
CONFIG_IP_ALWAYS_DEFRAG under Linux).

• TCP-ACK/Window scan
With the aid of this scan it is possible, for
example, to determine whether a firewall is a

simple packet filter for incoming SYN packets or a
"stateful firewall". This scan sends an ACK
packet with a random sequence number to the
port. If an RST comes back, the port is classed as
"unfiltered". If nothing (or an ICMP unreachable
error) comes back, the port is classed as
"filtered". Open ports cannot be detected.

• TCP-Window scan
As with the ACK scan, only an anomaly in the TCP
window size reporting code of an operating system
is exploited. This means that in addition to the TCP-
ACK scan, open ports can also be detected.

• UDP raw ICMP port unreachable scan
This scan is fiddly, as open ports with UDP do not
have to send any confirmation to our packet (UDP
is not connection-oriented), nor closed ports an
error packet. Fortunately most machines send an
ICMP_PORT_UNREACH-error message, if a packet
is sent to a closed UDP Port. So at least it is
possible to find out if a port is closed.
There are no guarantees that error messages for
either UDP packets or ICMP will arrive. Therefore,
a UDP scanner has to retransfer any potentially
lost packets Otherwise, one would receive any
amount of false positive results – say open ports
where there simply are none.
The scan is also unspeakably long-winded, as RFC
1812, Section 4.3.2.8 ("Rate Limiting") must be
observed. This section stipulates the number of
ICMP error messages per unit of time. So for
example the Linux kernel in net/ipv4/icmp.h limits
the creation of ICMP destination unreachable
messages to 80 per 4 seconds, with a 0.25
second forced break, if this limit is exceeded.

• ICMP echo scan (ping-sweep)
'Not really a port scan, as ICMP does not
recognise any ports. In this case all machines are
simply pinged in order to determine whether they
are "up" or "down".

• TCP-Ping scan
This scan sends a packet with ACK flag to a port
(standard: 80). If, in response, an RST packet
comes, the machine is "up". This scan can be
used as an alternative when (as at
www.microsoft.com for example) the echo port
has been deactivated.

• Direct (non-portmapper) RPC-scan
This scan functions in tandem with the scan types
from nmap. All open ports are bombarded with
SunRPC-NULL commands in order to detect
whether they are RPC ports and if so, which
program and version they are using.

• Protocol scan
This scan sends IP headers (without data) with
different protocol fields to the host. The host then
(normally) returns a "Protocol Unreachable", for
the protocols that it does not control. nmap can
now create a list of the protocols supported by a
process of elimination. This is very similar to the
UDP scan from a design point of view. Naturally,
there are also hosts here which do not send back

KNOW-HOWNETWORK SECURITY

4 · 2001 LINUX MAGAZINE 47

046snortnmap.qxd 22.11.2000 12:00 Uhr Seite 47

a "Protocol Unreachable" – in this case all
protocols appear as "open". So this scan will not
work against HP-UX Version 10.20 for instance.

• Determination of an operating system using
TCP/IP "Fingerprinting"
In this method, a selection of packets are sent
with different TCP flags (SYN, BOGUS, Don't-
Fragment-Bit...) to an open and a closed port
respectively and the response is compared with
entries from known systems from a databank (like
a fingerprint). An overview of all flags specified in
the protocol is given in Table 1. Obviously one can
also modify the "fingerprint" of the TCP/IP stack
on commercial Unixes. In particular, HP-UX 10.20
therefore comes with very naive default settings;
this is where the tool nettune can work wonders:

/usr/contrib/bin/nettune -s tcp_random_seq 2
/usr/contrib/bin/nettune -s hp_syn_protect 1
/usr/contrib/bin/nettune -s ip_forwarding 0
echo 'ip_block_source_routed/W1' | \
/usr/bin/adb -w /stand/vmunix /dev/kmem

This makes the creation of the TCP sequence
numbers "more random", protection against
SYN flooding is activated, IP forwarding is
deactivated and source-routed packets are
blocked by a direct kernel hack. These are TCP
packets which are allocated their path through
the network, the route, at the point of creation
by the IP stack. But nowadays very few routers
still accept this mechanism.

• TCP Reverse-Ident scan
In 1996, Dave Goldsmith found in a posting on
Bugtraq that the ident-protocol (RFC 1413)
reveals the user under which a process connected
via TCP is running. And this happens even if the
process concerned did not even make the
connection! That means that one can make a
connection to the HTTP port and find out using
identd under which user the httpd is running.
This scan functions only with a TCP-connect()
scan (Option -sT).
In addition, nmap offers performance and
reliability features such as a dynamic calculation
of delay times, packet time-outs and re-
transmission attempts, parallel port scans and
recognition of machines which are switched off
by means of parallel pings.
Naturally, one can easily specify the hosts and
ports to be scanned. Apart from stating the port

status, nmap also defines the predictability of the
TCP sequence numbers and thereby the
susceptibility of the machine to IP spoofing
attacks.

Hiding your own IP address

Furthermore, it is also possible to activate a so-
called "decoy" option (-D). This prevents the other
party from finding out which host has initiated the
scan. By specifying the option
Ddecoy1.host.com,ME,decoy2.host.com, nmap
"forges" packets with the sender addresses of
decoy1.host.com and decoy2.host.com.

If both decoy1.host.com and decoy2.host.com
are "up", these will send RST-packets as expected,
so that for the target machine decoy1.host.com,
decoy2.host.com and the local host can be
distinguished. If the decoy-Hosts are "down", the
target of our scan will be flooded with SYN-packets.

In standard mode nmap uses an ICMP ping and
a TCP-ACK ping with Port 80 as originating port
(Port 80 is often let through firewalls because of
HTTP-requests) in order to determine whether
machines are "up". Then the port scan is
performed. An attempt is made to define the
operating system of the scanned host as a last
resort.

It is obvious that one could easily write a rule for
an Intrusion Detection System (IDS), which would
detect an nmap-scan with certainty. Therefore one
could, with -P0 for example, deactivate the ICMP
ping. Explicit activation of the TCP ping is done
through -PT.

Examples

% nohup nmap -r -iR -I -sT -p53 > named.scaU
n.out &
% tail -f named.scan.out

Now we can go on the hunt for machines on which
named is running as root. The option -r scans the
ports of the target machine in a random sequence, -
iR selects random IPs as target for the scan, -I
activates the reverse ident scan, which only
functions with a TCP-connect()scan (-sT). -p53
finally defines Port 53 as scan target.

In the second example, we want to scan
target.host, but at the same time avoid being
detected too easily. So we will use a few decoy
hosts:

% nohup nmap -r -P0 -sS -Ddecoy1,decoy2,decoU
y3,decoy4,decoy5 target.host

In this instance, the hosts decoy1 to decoy5 should
exist and be reachable or "up". The option -P0
deactivates the pings from target.host before the
scan – we are assuming that it is "up". -sS activates
the SYN-scan and -Ddecoy1,decoy2,decoy3,
decoy4,decoy5 uses the hosts decoy1 to decoy5 in
order to create a bit of confusion.

KNOW-HOW NETWORK SECURITY

48 LINUX MAGAZINE 4 · 2001

Table 1: TCP-Flags and what they mean
TCP-Flag Meaning
FIN finish disconnect
SYN synchronize
RST reset
PSH push
ACK acknowledge
URG urgent
(2) reserved
(1) reserved

046snortnmap.qxd 22.11.2000 12:00 Uhr Seite 48

Snort – looking on the bright side

Snort (http://www.snort.org/)
from Martin Roesch is a so-
called Intrusion Detection
System (IDS). It is capable of
analysing IP-Network traffic
online and recording packets.

It can also be used for
protocol analysis, as well as for

looking into the flow of network data for contents
and logging corresponding packets together with
their contents.

By using context-sensitive rules, Snort can be
used to detect a multitude of attacks and scans,
such as for example Buffer Overflows, Stealth Port
Scans, CGI Attacks, SMB probes and active OS
Fingerprinting and to report these to the
administrator.

Snort can – if it has been configured with --
enable-flexresp – even respond to incoming
packets, for example by sending RST-packets, which
are intended to close the connection down.

This reporting can be done via syslog(), a file, a
UNIX Domain Socket or smbclient (in the form of a
WinPopup Requester).

Philosophy

Intrusion Detection Systems (IDS) are technologies
which reduce the risk of intrusion, but do not
eradicate it altogether.

An attack is a transient incident. Conversely, a
"vulnerability" (weak point) permanently contains
within itself the risk of an attack. The difference
between an attack and a vulnerability, is that the
attack exists only at a specific time, while the
vulnerability exists regardless of the time of
observation. One could also say that an attack
represents an attempt to exploit a weak point.

What do I need?

Snort is based on libpcap, the Packet Capturing
Library. This can be obtained from
http://www.tcpdump.org/. When using --enable-
flexresp it is necessary to install the libnet library
from http://www.netfactory/libnet.

Last of all, of course, you need rules, too. These
can also be found at http://www.snort.org – click
there on "Rule Database". It is advisable to copy
these to /etc/snort.conf, as they more or less
represent the "configuration" of Snort.

Things to look out for?

These rules are obviously based on so-called
signatures, which must be known in advance. This
means that our IDS (like all others) does include a
risk of false alarms. We must differentiate between
two sorts of false alarms:

• false positives: normal network activity is classed
as an "attack";

• false negatives: A real attack is ignored.
Consequently, we still need a human being
who will subject alarms to thorough
investigations. false negatives are more
dangerous than false positives, as they give the
user a treacherous feeling of security. Equally,
snort can even be used for a DoS (Denial of
Service), for example by flooding log files (and
thus the disks).

What should I change?

In the rules which we have installed by this point
under /etc/snort.conf, a few alterations must be
made.

preprocessor portscan: 10.0.0.1/8 \
7 1 /var/log/snort/portscan.log

specifies how many connections (in this case, 7) per
unit of time (in this case 1 second), to which target
addresses (the entire 10.x.x.x network) are classified
as a port scan. The port scan is logged in
/var/log/snort/portscan.log.

In the line var HOME_NET 10.0.0.1/24 the local,
trustworthy network must be entered, especially as
many rules differentiate between machines within
and outside the HOME_NET. Here, this is 10.0.0.x.
An individual host 10.0.0.1 would consequently be
10.0.0.1/32.

In the line

preprocessor portscan-ignorehosts: 10.0.0.1/U
30

it is possible to enter the hosts from which port
scans should be ignored. There, for example, one
could use the same settings as for HOME_NET.

The start

It is advisable to activate Snort by means of a start
script (for example /sbin/init.d/snort when changing
to a run level with network support. I start Snort
from /sbin/init.d/snort with:

snort -u snort -g snort -D -d -b -s -c /etc/sU
nort.conf -l /var/log/snort

Brighter, better, faster!

The log files are at first glance truly enormous and
there are numerous log file analysers which exist for
snort, which statistically process the threats for the
administrator.

Rules

The format of the rule file is described at
http://www.snort.org/writing_snort_rules.htm.
A sample rule is:

KNOW-HOWNETWORK SECURITY

4 · 2001 LINUX MAGAZINE 49

046snortnmap.qxd 22.11.2000 12:01 Uhr Seite 49

alert icmp $HOME_NET any -> !$HOME_NET any (mU
sg:"IDS191 - DDoS - \
barbed wire server-response"; content: "|6U
6 69 63 6B 65 6E|"; \
itype: 0; icmp_id: 667;)

Rule Header

Every rule starts with a "rule header"; it consists of
several fields:
alert icmp $HOME_NET any -> !$HOME_NET any

Action ("rule action")

alert: a packet generates an alarm and is logged.
log: The packet is only logged.
pass: The packet is ignored.
In our example an alarm is produced.

The protocol

In our example this is an ICMP-packet.

IP addresses

IP addresses are stated in the form w.x.y.z/n, where
w.x.y.z is an IP address and n is a CIDR block.
So 10.0.0.0/8 specifies the whole 10th Class-A
subnetwork, and 10.0.0.0/24 merely all hosts from
10.0.0.1 to 10.0.0.254.
As operator, the negation operator ! is available.
The packets in our example come from $HOME_NET.

Ports

Ports can be specified as individual ports, domains
or negations. In that case, the key word any stands
for any port you like:

1
Port 1

1024:
All ports above Port 1024 (inclusive)

:1024
All ports below Port 1024 (inclusive)

Our example involves ICMP packets, but ICMP dU
oesn't know any ports, so we are using any.

Directional operator

The directional operator states in which direction
the rules apply:

KNOW-HOW NETWORK SECURITY

50 LINUX MAGAZINE 4 · 2001

Option Meaning
msg Generates an alarm and writes in the log.
logto Log to a special file instead of the default file.
ttl TTL field in the IP header
id Fragment-ID field in the IP header
dsize Size of the packet content
content Content of a packet
offset This can be used to specify an Offset for the content

option, with which the content will be matched.
depth This can be used to specify the maximum search length

for the content option.
nocase This is used to make the content option non-case

sensitive.
flags TCP-Flags
seq TCP sequence number
ack TCP acknowledgement field
itype ICMP type
icode ICMP code

Option Meaning
session This can be used to log the application layer information

for a session.
icmp_id ICMP-Echo ID field
icmp_seq ICMP echo sequence number
ipoption IP option fields:
rr Record route
eol End of list
nop No op
ts Time Stamp
sec IP security option
lsrr Loose source routing
ssrr Strict source routing
satid Stream identifier
rpc Check RPC services for specific application or procedure calls
resp This can be used to generate an active reply

(for example to prevent disconnection by sending an
RST packet).

Table 2: Snort rule headers

The parameters of snort:
-t /snort-chroot
snort can be allowed to run similar to BIND-8.x chrooted, in order to
minimise the risk of snort being compromised.
To do this is it advisable to statically link snort (LDFLAGS=@LDFLAGS@ -s -
static in the Makefile). Of course, the whole thing only makes sense when
snort does not have root privileges:
-u snort
Start snort with the user-id "snort". As snort processes data from the
network, we don't want it to have root privileges – or else an exploit by
snort could lead to a root compromise. For that reason, a user "snort" and
a group "snort" (to which pnly the user "snort" belongs) must be created.
This user should be unable to log in and have no shell.
-g snort
Start snort with the group-id "snort".
-D
Start snort in daemon mode.
-d
Also, log the data of the application layer.
-b
Writes logged packets in tcpdump format on the disk. This is necessary for
performance reasons, especially with 100 MBit networks!
-s
Write alarms into the syslog.
-c /etc/snort.conf
Path to configuration- and rule file
-l /var/log/snort
Path to the directory in which snort stores its log files.

046snortnmap.qxd 22.11.2000 12:01 Uhr Seite 50

-> On the left hand side of -> is the source, and on
the right the target.

The bidirectional operator. Network traffic in
both directions is acquired.

In our example the rule is applied to all ICMP
packets leaving our network.

Rule Options

After the rule header come the options for the rule,
and an overview can be found in Table 2.

(msg:"IDS191 - DDoS - Barbed wire \
server-response"; content: \
"|66 69 63 6B 65 6E|"; itype: 0; icmp_id: 66U
7;)

In our example, a warning is created (msg:"IDS191 -
DDoS - Barbed wire server-response";), when the
content of the packet contains the above-named
sequence of bytes anywhere (content: "|66 69 63
6B 65 6E|";) and the ICMP type 0 is (itype: 0;) and
the ICMP echo ID field has the value 667 icmp_id:
667;.

Preprocessors

In snort there are a few preprocessors, which apply
before the rules; there are:
• preprocessor minfrag: 128

This preprocessor recognises fragmented
packets under the specified fragment size (in
this case: 128). Normally, packets are
fragmented on their way from the source to the
target by routers, but one may assume from this
that no hardware fragments smaller than 512
Bytes are produced. So everything smaller is
created artificially.

• preprocessor http_decode: 80 8080
With this preprocessor, HTTP URLs can be
converted into clear text ASCII.

• preprocessor portscan: 192.168.1.0/24 Ports
Time /var/log/portscan.log
More than "ports"; connections during the
period of "time" seconds on the network
192.168.1.0/24

A typical attack sequence, which snort has captured
in the network of a customer, can be found in the
box "Attacks and Strategies"

Explanations:

At 19:52:24, ???.???.86.226 started its "port
scan" – as the maximum number of connections
per unit of time had been exceeded, Snort has
characterised the connections as port scans. The
attacker could have dodged our port scan
preprocessor by simply having a bit more
patience, so nmap offers a "timing" option for
the speed of a port scan: nmap -T Paranoid or
nmap -T Sneaky might possibly not have triggered
the preprocessor.

The speed of the attack, however, tends to
indicate an automatic tool rather than nmap – in
the end it was all over in about 3 seconds.

The scan succeeded with SYN-FIN packets on
ports 53 of xxx.yyy.106.18 and xxx.yyy.106.23; the
rule which captured this is:

alert tcp !$HOME_NET any -> $HOME_NET any (msU
g:"SCAN-SYN FIN";flags:SF;)

After that, for both machines, a test was performed
to find out if the nameservers support inverse
queries :

alert udp !$HOME_NET any -> $HOME_NET 53 (msU
g:"IDS277 - NAMED Iquery \
Probe"; content: "|0980 0000 0001 0000 0000|"U
; offset: "2"; depth: "16";)

This indicates that an attempt may be made to
exploit a buffer overflow in BIND
(http://www.cert.org/advisories/CA-
98.05.bind_problems.html), which grants the
attacker root privileges. For this to work, the server
concerned must have the fake-iquery option
activated.

Finally, the BIND version was queried:

alert udp !$HOME_NET any -> $HOME_NET 53 (msU
g:"IDS278 - NAMED Version \
Probe"; content: "|07|version|04|bind|00 001U
0 0008|"; nocase; offset: "13";depth: "32";)

The above buffer overflow can only be taken
advantage of on BIND nameservers with version
numbers lower than BIND 4.9.7 (BIND Version 4)
and BIND 8.1.2 (BIND Version 8).

At 19:54:04 snort then reports the status of the
port scan; there were 7 connections or attempted
connections, spread over 3 machines on the sub-
network being monitored, 5 of them TCP and 2
UDP.

KNOW-HOWNETWORK SECURITY

4 · 2001 LINUX MAGAZINE 51

Attacks and Strategies
Jun 25 19:52:24 snort[11597]: spp_portscan: PORTSCAN DETECTED from ???.???.86.226
Jun 25 19:52:24 snort[11597]: SCAN-SYN FIN: ???.???.86.226:53 -> xxx.yyy.106.18:53
Jun 25 19:52:24 snort[11597]: SCAN-SYN FIN: ???.???.86.226:53 -> xxx.yyy.106.23:53
Jun 25 19:52:25 snort[11597]: SCAN-SYN FIN: ???.???.86.226:53 -> xxx.yyy.106.25:53
Jun 25 19:52:26 snort[11597]: IDS277 - NAMED Iquery Probe: ???.???.86.226:1565 -> xxx.yyy.106.18:53
Jun 25 19:52:26 snort[11597]: IDS277 - NAMED Iquery Probe: ???.???.86.226:1568 -> xxx.yyy.106.25:53
Jun 25 19:52:27 snort[11597]: MISC-DNS-version-query: ???.???.86.226:1565 -> xxx.yyy.106.18:53
Jun 25 19:52:27 snort[11597]: MISC-DNS-version-query: ???.???.86.226:1568 -> xxx.yyy.106.25:53
Jun 25 19:54:04 snort[11597]: spp_portscan: portscan status from ???.???.86.226: 7 connections across 3 hosts: TCP(5), UDP(2) SU
TEALTH
Jun 25 19:57:02 snort[11597]: spp_portscan: End of
portscan from ???.???.86.226

046snortnmap.qxd 22.11.2000 12:01 Uhr Seite 51

Moral

BIND should – if at all – always be installed in the
most up to date version. It is precisely the
"professional" Unixes which are having problems
with this because the patches come out relatively
late. The nameserver should only respond to queries
from the local network (but also, of course, to all
queries which concern primary and secondary
zones) hence /etc/named.conf contains the
following:

acl "trusted" {
134.169.0.0/16;
localhost;

};

acl "bogon" {
0.0.0.0/8; // Null address
1.0.0.0/8; // IANA reserved, popular faU

kes
2.0.0.0/8;
192.0.2.0/24; // Test address
224.0.0.0/3; // Multicast addresses

// The following Enterprise
networks may or may not be bogus.

10.0.0.0/8;
172.16.0.0/12;
192.168.0.0/16;

};

options {
allow-query {

trusted;
// only queries from "trusted" hosts

};
allow-recursion {

trusted;
// only recursive queries

from "trusted" hosts
};
allow-transfer {

none;
// no-one can have my zones!

};
blackhole {

bogon;
// I'm not talking to them

};
};

In addition, the issue of "version.bind" should be
prohibited (dig @server version.bind CHAOS TXT),
which really does make sense in view of the
increasing number of attacks on nameservers in
recent times:

zone "bind" chaos {
type master;
file "master/bind";

};

And the zonefile master/bind:

$ORIGIN bind.
$TTL 1W

@ 1D CHAOS SOA localhost. root.localU
host. (

1 ; serial
3H ; refresh
1H ; retry
1W ; expiry
1D) ; minimum

CHAOS NS localhost.

It would also be possible to fill the zone with "false"
(version) data, in order to attract hackers.
Alternatively, one could also install other
nameservers such as for example tinydns from Dan
Bernstein, which has been proven to be
considerably more secure.

The Attacker

Is the attacker also a victim? We use nmap to obtain
information:

nmap -T Sneaky -O -sS ???.???.86.226

Starting nmap V. 2.54BETA1 by fyodor@insecU
ure.org (www.insecure.org/nmap/)
Interesting ports on ??????????.???????????U
??.co.jp (???.???.86.226):
(The 1511 ports scanned but not shown below aU
re in state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
37/tcp open time
53/tcp open domain
70/tcp open gopher
98/tcp open linuxconf
109/tcp open pop-2
110/tcp open pop-3
111/tcp open sunrpc
113/tcp open auth
143/tcp open imap2
5680/tcp open canna

TCP Sequence Prediction: Class=truly random
Difficulty=9999999 (Good luck!)

Remote operating system guess: Cobalt Linux
4.0 (Fargo)
Kernel 2.0.34C52_SK on MIPS or TEAMInternet SU
eries 100 WebSense

KNOW-HOW NETWORK SECURITY

52 LINUX MAGAZINE 4 · 2001

046snortnmap.qxd 22.11.2000 12:01 Uhr Seite 52

MTA

% telnet ???.???.86.226 25
Trying ???.???.86.226...
Connected to ???.???.86.226.
Escape character is '^]'.
220 ??????????.?????????????.co.jp ESMTP SenU
dmail 8.8.7/3.7W1.0; Tue, 27 Jun 2000 17:30:4U
7 +0900
QUIT
221 ??????????.?????????????.co.jp closing cU
onnection
Connection closed by foreign host.

See Bugtraq Vulnerability ID 717 and many others.
But this query is somewhat lacking in subtlety. It's
much more elegant to send mail to
"foobar@??????????.?????????????.co.jp" and
put it, for example, in postfix debug_peer_list =
??????????.?????????????.co.jp; then the log
process will be seen in /var/log/mail.

FTP Daemon

% ftp ???.???.86.226
Connected to ???.???.86.226.
220 ??????????.?????????????.co.jp FTP serveU
r (Version wu-2.6.0(1) Thu Oct 21 12:22:27 EDU
T 1999) ready.

A WU-FTPD. See Bugtraq Vulnerability ID 1387.

Nameserver

% dig @???.???.86.226 version.bind CHAOS TXT
;; ANSWER SECTION:
VERSION.BIND. 0S CHAOS TXT "8.1.2"

An ISC BIND 8.1.2. See Bugtraq Vulnerability ID 983.

POP2/POP3 Daemon

% telnet ???.???.86.226 109
Trying ???.???.86.226...
Connected to ???.???.86.226.
Escape character is '^]'.
+ POP2 ??????????.?????????????.co.jp v4.5U
1 server ready
QUIT
+ Sayonara
Connection closed by foreign host.
% telnet ???.???.86.226 110
Trying ???.???.86.226...
Connected to ???.???.86.226.
Escape character is '^]'.
+OK POP3 ??????????.?????????????.co.jp v7.5U
9 server ready
QUIT
+OK Sayonara
Connection closed by foreign host.

POP2 is, exceptionally, invulnerable. See Bugtraq ID 283.

IMAP Daemon

% telnet ???.???.86.226 143
Trying ???.???.86.226...
Connected to ???.???.86.226.

Escape character is '^]'.
* OK ??????????.?????????????.co.jp IMAP4revU
1 v12.250 server ready

A WU-IMAPD 4.7. See http://oliver.efri.hr/~crv/
security/bugs/Linux/imapd9.html

The computer is open like a garden gate and badly
patched. Most likely a victim itself – who knows what
might be running on that one? An RPC and Ident-scan
provides, in addition to our above findings, also:

% nmap -P0 -v -v -sT -sU -I -sR ???.???.86.226

... snip ...

(The 3067 ports scanned but not shown below aU
re in state: closed)
Port State Service (RPC) OU
wner
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
37/tcp open time
37/udp open time
53/tcp open domain
53/udp open domain
70/tcp open gopher
98/tcp open linuxconf
109/tcp open pop-2
110/tcp open pop-3
111/tcp open sunrpc (rpcbind V2)
111/udp open sunrpc (rpcbind V2)
113/tcp open auth
143/tcp open imap2
514/udp open syslog
3130/udp open squid-ipc
5680/tcp open canna

Canna

Also, canna, a service provider which converts
Japanese Kana into Kanji characters, displays
numerous vulnerabilities:
http://www.securityfocus.com/bid/757Bugtraq ID 757
http://www.securityfocus.com/bid/758Bugtraq ID 758
http://packetstorm.securify.com/advisories/debian/d
ebian.canna.txtDebian
Security Advisory
http://packetstorm.securify.com/advisories/freebsd/F
reeBSD-SA-00:31.canna
FreeBSD-SA-00:31 ■

The author
Since completing his degree in
computer science at TU-
Braunschweig, Ralf
Hildebrandt
Ralf.Hildebrandt@innominate.
de has been working as a
systems engineer.

KNOW-HOWNETWORK SECURITY

4 · 2001 LINUX MAGAZINE 53

Info

[1]http://www.snort.org/ Snort IDS
[2]http://www.insecure.org/nmap/ nmap network scanner
[3]http://www.securityfocus.com/ security information
[4]http://neworder.box.sk/ security information and exploits
[5]http://www.faqs.org/rfcs/rfc793.html RFC 793 TCP specification
[6]http://www.faqs.org/rfcs/rfc1413.html RFC 1413 identification protocol
[7]http://www.faqs.org/rfcs/rfc1812.html RFC 1812 Requirements for IP Version 4 Routers
[8]http://phrack.infonexus.com/ Phrack Phrack 51 describes scan techniques
[9]http://xanadu.rem.cmu.edu/snort/ Tools from Yen-Ming Chen:
[10]http://www.silicondefense.com/snortsnarf/ Silicon Defence

■

046snortnmap.qxd 22.11.2000 12:01 Uhr Seite 53

