
BEGINNERS PROGRAMMING CORNER

104 LINUX MAGAZINE 5 · 2001

Many of you will be asking
yourselves why you should even

have to start writing programs. After all,
there seems to be a tool or utility for Linux that does
just about anything you can imagine. The problem
is, of course, that while lots of programs and utilities
work fine in theory, some are just too complicated
or don’t meet your exact needs. Learning to
program will solve these problems by allowing you
to create customised tools and utilities. These can
be created either from scratch or by modifying
something someone else has written. Since this
feature is aimed at beginners, we’ll stick to the very
basics and limit ourselves to quite simple programs.
In doing so, our aim is to give you enough of a
glimpse into the wonderful world of programming
to encourage you to delve much deeper.

BASH programming language

The Bourne-Again Shell – BASH for short, has
established itself as the standard shell for most Linux
distributions, so you’ll almost certainly find it ready
and waiting for you on your Linux system. But BASH
is more than just a command line for starting
programs. In fact, it is almost a complete

programming language. For this reason we’ll use
BASH as the programming basis of this feature. We’ll
also touch on one or two other useful programs in
passing. And while the examples we’ll be giving are
BASH-specific, the programming techniques have
been kept as universal as possible, helping you get to
grips with other languages should you want to
progress to more advanced programming tools and
techniques.

First steps

BASH programs are also called ”scripts”. Scripts
should always begin by describing the shell to be
used, then go on to list commands to be executed
(which you could also enter manually outside the
program). Traditionally, the first program new
programmers write is one that prints ”Hello world”
on screen. Here’s how a BASH script to do just that
(twice) looks:

#!/bin/bash
echo Hello world
echo Hello world

The first line is strictly speaking a commentary line,
since it begins with a hash ”#”. Generally the rule is

Have you ever sat in front of your computer and

been irritated by having to perform some

annoyingly repetitive task? Many such tasks can

be automated by writing a simple program, and

in the first feature we’ll give you just an

introducton into the world of programming.

Part 1: Principles of BASH

HELLO
WORLD

BY MIRKO DÖLLE

BEGINNERSPROGRAMMING CORNER

5 · 2001 LINUX MAGAZINE 105

Version conflict
The examples shown here in this feature all relate to Version 2 of BASH, and are at best only
partly applicable with the old Version 1. Although Version 2 has now been in use for over
two years and has so far shown no significant problems, some distribution manufacturers,
such as Red Hat and Caldera, are still installing the old Version 1.4 under /bin/bash as well as
Version 2 under /bin/bash2.

For this reason, the first thing you must do if you have any problems with entering our code
examples is to check which version you are addressing via /bin/bash by entering the
following command:

/bin/bash -c ’echo $BASH_VERSION’

If the result is Version 1, you must hunt down Version 2 – it will probably be lying around in
bin and be called bash2. Enter the following command to find out:

ls /bin/bash2

If ls reports that it is unable to find /bin/bash2, you should look on the installation CD of
your distribution and if necessary install the package from there. If the ls command does
find /bin/bash2, then when entering any of our program examples you must then always
use /bin/bash2 instead of /bin/bash.
As an alternative, you could completely convert your system to BASH 2. To do so, first
copy /bin/bash into /bin/bash1. Next copy /bin/bash2 to /bin/bash. In fact renaming is
also sufficient, but then programs which use /bin/bash2 would no longer function,
which is why /bin/bash2 should be retained. The real problem is that you cannot
overwrite or move a file which is in use – and as you are using normal /bin/bash as root,
before you can follow our instructions you must first release /bin/bash using a handy
little trick.
First log in as root and again ensure that there really is a /bin/bash2. If there isn’t then
you must not perform the following steps under any circumstances unless you want to
run the risk of never being able to log in again as root! Whatever the case, though, you
should launch an (extra) text console and log in there as root. We will refer to this
console for the sake of simplicity as ”emergency console”. At first you won’t need to
enter anything on this emergency console, so you should now change back to your
(normal) work console. Here we need to alter the default shell for the user root using
the following command:

chsh -s /bin/bash2 root

Next, switch to yet another text console and log in there again as root. If everything
has gone well, echo $BASH_VERSION will now report that it is Version 2 on this
console. If you are unable to log in, something has gone wrong and you absolutely
must now restore the former status. To do so, change to the emergency console and
enter:

chsh -s /bin/bash root

This will set the log-in shell back to the initial value.
If the new log-in worked, treat this as a new emergency console and log out of the old one
and out of all other consoles. It may also become necessary to close KDE or GNOME. All that
should now remain is the new emergency console.
The next step is to convert from BASH 1 to BASH 2. To do this, log in again to a new console
as root and copy bash to bash1 and then bash2 to bash as we outlined when we started
using the following commands:

cp /bin/bash /bin/bash1
cp /bin/bash2 /bin/bash

The last step is then to reset the log-in shell from root :

chsh -l /bin/bash root

If you can log in again on another console as root and see Version 2 of BASH displayed, the
conversion has worked, and Version 2 is now your standard shell. Congratulations!

BEGINNERS PROGRAMMING CORNER

that only comments should stand between the hash
sign and the end of that line. You can have
comment lines without any commentary if you wish
– to break apart code sections, for example – but
blank lines can also be used for this purpose and are
a better choice.

The first line in our example tells you which
program this script should be processed with (BASH
in this case) though it could be Perl or TCL/TK for
instance, which is why this line is so important.

The next two lines both cause ”Hello world” to be
outputed onto the screen, followed by a line break.

Meta-characters and Escapes

Despite the variation in the text following the echo
command, the result of BASH processing lines two
and three are identical. This is because BASH
interprets what are known as control symbols (also
known as meta-characters and control
characters), in a special way. The spaces character is
one such control symbol, and is used as a separator
between parameters of a command, where a
sequence of space characters is interpreded as one
parameter separation. The command in question
here is echo, which simply prints all parameters (the
things following the echo command) in sequence,
each one separated by a space. In our example both
line two and line three therefore have the same
effect. echo simply sees two parameters ”Hello” and
”world”.

There are quite a few of these special
characters, and the most important ones are listed
in Table 1. To get more than one space between
”Hello” and ”world” we have to use another
special character, escape. This character informs
BASH that the next character isn’t a special
character – a true space and not a separator
between parameters in our case. In BASH, and
many other tools and languages, the escape symbol
is represented by the backslash ”\” character. So, to
print ”Hello”, three spaces, then ”world” we’d
have to use the following command.

echo Hello\ \ \ world

Of course there will be times when we actually want
to print a backslash. To do so, we have to ”escape
the escape” by typing ”\\”. Alternatively, you can
use single or double quotes to demote spaces and
most other special characters into simple text, such
as in the following example:

echo "Hello world"

The use of quotes in this way is, however, best
employed infrequently. They are far more effective
when used for other purposes, as we’ll see later on.

Variables

It would be boring to only be able to print fixed,
unchanging text. This is where things known as
variables come into the equation. These are simply
named containers for text or numbers.

Unlike more sophisticated languages, BASH does
not differentiate between different types of variable,
so you can store whole numbers (in principle decimal
numbers are not allowed), letters, words or whole
sentences in a BASH variable without first having to
tell it which of these you want the variable to store.
What’s more – again unlike some other programming
languages – a variable does not have to be declared
(”registered”) before you can use it; it simply comes
into existence automatically as the result of the first
value assignment.

Something well worth watching out for is the
fact that variable names are case sensitive. In the
following example we’ll give the same variable five
completely different values using the ”=” operator,
whose use should be pretty much self-evident:

#!/bin/bash
var=2
var=a
var=Hello
var=Hello\ world
var="Hello world"

To find out a variable’s contents (also known as its
value), you simply use its name preceded by a dollar
symbol – ”$” (another one of these special
characters). You can also optionally enclose the
name of the variable in curly brackets. This variant is
used when a letter immediately follows the variable

Meta character: Character
interpreted in a special way.
Escape character: Cancels

the effects of meta-, control-
and escape-characters.

Quotes: Double quotes, single
quotes and reverted single

quotes. These ensure that most
meta and control characters are

no longer interpreted as such.
These must always be used in

pairs.
Script: Generally used to refer

to shell and sometimes also
Perl programs. The script is

always a text file that can be
displayed directly.

■

106 LINUX MAGAZINE 5 · 2001

Table 1: Control- and special characters in BASH
Character Function
Space Separator between program parameters
Tabulator (tab) Separator between program parameters
Enter (newline) Enter command
\ (backslash) Escape character
| (pipe) Concatenation of input/output of several programs
& (ampersand) Start program as background process, input-/output redirect
; (semicolon) Separator between two program calls
() (braces) Grouping, calculation
< (input redirect)
> (output redirect)
|| (logical or) Link two commands with ”OR”
&& (logical and) Link two commands with ”AND”
;; End of a case

Table 2: BASH Operators
Operator Assignment Operator Function
+, -, *, / +=, -=, *=, /= basic types of arithmetic
% %= Remainder from whole number

division (5%2=1)
! Logic negation (!1 = 0, !0 = 1)
&& Logic AND (a and b)
|| Logic OR (a or b)
==, != equality, inequality
<=, >=, <, > comparison larger/smaller
~ Binary inversion (~1101 = 0010)
& &= Binary AND (1011 & 1101 = 1001)
| |= Binary OR (1100 | 0101 = 1101)

BEGINNERSPROGRAMMING CORNER

name. To better understand what we’re talking
about here, have a look at the following example:

Cost=100
echo $Cost Euros
echo ${Cost}Euros

The second line would print ”100 Euros”, while the
third prints ”100Euros” without a space between
the amount and the unit of currency. Without curly
brackets in the third line, we would have got the
content of the (non-existent) variable $CostEuros.
Non-existent variables always have no value, they
are simply empty, and echo $CostEuros would
therefore print out a blank line.

BASH, by the way, replaces the variable names at
almost every point by the value of the variable, a
process called variable resolution. The only exception
to this rule occurs when inverted commas ” ‘ ” are
used. Anything between these is never replaced with
a value. To use the name of a variable, including the
dollar sign, for printing (or for other functions), we
can also escape the ”$” as an alternative. Here are
some examples of what we mean:

Cost=100
Cost="$Cost Euros"
echo Content of the variable ’$Cost’: $Cost
echo Content of the variable \$Cost: $Cost

Note that in the second line we have assigned Cost
a character string in which the variable itself occurs.
In this case, BASH first evaluates the part to the
right of the equals sign, therefore substituting
”100” for $Cost. To BASH, then, the right hand side
of the equals sign is therefore ”100 Euros”. Once
the right-hand side of the equation has been
evaluated (to form what’s known as the r-value), it
then assigns it to the variable on the left-hand side
(the l-value). Don’t worry if you don’t understand
this yet, though, as we’ll be coming back to this in
another example later on.

Arithmetical operations and
zero-function
Assigning values to variables is all very well, but
they only come into their own when manipulated,
compared or used in computations. BASH
provides quite a few operators to do this,
including arithmetic, logic and binary ones. When
using these, though, with the exception of logical
operators (which can be used with variables
containing absolutely anything) you must make
sure that you work with variables containing only
numbers. Remember, BASH can store both text
and numbers in a variable. It is your job to make
sure you aren’t trying to calculate with letters at
any time.

To understand this better, take another look at
the first two lines of our last example. In the first
line there was still just a number in Cost (100), but
in the second line we added on ”Euros”. In other

words the Cost variable has suddenly turned into a
character string rather than a number. This means
we can no longer do calculations with the Cost
variable. If you try to do so, BASH will abort your
program with an error message.
There are two notations for calculations; the
instruction is either enclosed in square brackets or in
double rounded brackets. In both cases it is
preceded by a dollar sign. Both notations can be
seen in the next example:

Value=$[$Value+1]
Value=$(($Value+1))
: $[Value+=1]
: $((Value+=1))

In the end all four lines do exactly the same thing,
which is to increase the content of Value by one.
Lines one and two are the easiest to understand
here, as usual the R-Value is evaluated first and then
assigned to the L-Value. Lines three and four work
on the same principle, because the operation
”a+=b” is defined as ”a=$a+b” – internally, BASH
converts the short notation into the full one.

What is unusual here is the colon before the
calculation instruction. This is a zero function, a
command that does nothing. What matters to us
here is that BASH evaluates the parameter after it in
exactly the same way as it would when calling up any
other command, such as echo, thus calculating the
result for us. The colon is necessary because the
calculation operations are always replaced by the
result, namely $Value, and without the colon this
would be interpreted as a command for BASH, which
it would then try to call up and undoubtedly fail.

As we’ve already said, as well as basic types of
arithmetic, BASH also offers logic and binary
operators, though these are only used rarely.
Whatever operators are used, though, additional
assignment operators are usually also available –
such as the ”+=” we used in our example and
which can make reading programs a great deal
simpler. You can find an overview of the operators
in Table 2.

Until next time

This brings us to the end of the first installment;
next time we’ll tell you about processing character
strings, introduce you to arrays and explain their use
by means of a few more examples. ■

r-value: The result of the
instructions to the right of the
equals sign
l-value: Variable to the left of
the equals sign, in which the r-
value is stored

■

5 · 2001 LINUX MAGAZINE 107

Quick glossary
echo Outputs all parameters separated from each other by a

space.
: (colon) Zero-function, has no direct effect. Is sometimes used for

arithmetical operations or variable manipulations. The actual
operations are stated as parameters of the ”:” function.

$[..] Calculates the arithmetical expression in brackets and
delivers the result.

$((..)) Calculates the arithmetical expression in brackets and
delivers the result.

