
Blender 2.0 was released at the Siggraph event in
July 2000 by the Dutch firm Not a Number (NaN). A
significant new release, it includes some quite
stunning new features that many a Blender fan had
been awaiting feverishly, including a built-in game
engine allowing for fast drafting of games models.
The initial release of this new version does have one
or two problems, a slightly wonky physics engine
and missing Linux sound support being the most
significant. The package is undergoing very rapid
development, though, and a new version appears
on the Internet (http://www.blender.nl) pretty much
on a monthly basis. This is a good thing, but
because things are changing so quickly you should
expect some compatibility issues to arise. Collision
detection and game dynamics are likely to work
differently before too long, for example, and a new
physics engine is currently being worked on. Also in
the development phase is a new Python-API, with
which allows even more complex game actions and
object types to be defined.

Having said all this, the most current version at
the time of writing, version 2.04, works very well
indeed. It is extremely simple to create interactive
environments without even having to write a single
line of code. More complex game concepts can also
be created with ease too, but doing so does require
a little bit more time and effort. You should be
aware, though, that you won't have much fun with
Blender 2.x without 3D hardware support. I use a
nVidia TNT2 under XFree86 4.0, but other cards will
work too.

How do I produce a game?

This feature is aimed at those who are already
familiar with Blender and virtual reality. We will still
go through a very quick overview of the individual
steps in the creation of a Blender game
environment though, just in case you are a bit rusty.

Create the level: Blender usually organises a
game level in a Scene. This, in turn, is split up into

PROGRAMMING GAME-BLENDER

90 LINUX MAGAZINE 5 · 2001

Blender, the well-known freeware

modeller, now has some

additional talents. Version 2.0,

also known as "Game-Blender",

includes special functions that

allow you to create complete 3D

games in next to no time.

Workshop – Game
prototyping with Blender

CHILDSPLAY
MARTIN STRUBEL

Fig.1: Snapshot of a
test level created with Blender

sectors, for which transparency tests are
performed. In order to be able play a level at a
reasonable speed (in other words at a high frame-
rate) you should give a lot of thought to the
subdivision of a level into sectors using polygon
complexities.
• Add moving objects: Generally, animated or

moving objects are called Props (short for
properties – i.e. characteristics). Moving objects,
which should be subject to the laws of physics –
such as the player, monsters, or bullets, are
regarded as actors. The engine evaluates
collisions between these objects and other
objects.

• Interactivity: Certain events trigger actions, which
are defined in Blender using what's known as a
SCA mechanism. SCA stands for Sensor-Controller-
Actuator. This is when an object (Prop or Actor) is
assigned one or more sensors. These react to
certain events such as key actuations and are
linked logically with other events by Controllers.
They can, using Actuators, trigger an action such
as an animation. The method will be explained
later using the example of a Switch-object.

• Process and refine dynamics: The materials menu
in version 2.0 has been expanded, a DYN (for
dynamic materials) option having been added.
This makes it possible to define physical
properties of a surface (such as friction, elastic
reflection, etc.). In addition, global parameters
apply to the player object, such as general
friction, gravitation and so forth.

An example

Ok, now that you have the basics under your belt,
let's go on to create a simple environment.

1. First create a plane. Now scale it through
EditMode to the desired size – Blender always
sets object scaling to (1.0,1.0,1.0) for sectors as
soon as the engine is started. Extrude a point in
the Z-direction as can be seen in the picture.
Especially important is the direction of the area
normals, which are displayed via the Edit button
([F9]) by Draw Normals – if applicable increase
NSize. Inverting the direction of normals is done
via W and Flip Normals.

2. Leave Edit mode and activate the Sector option in
the RealTime menu (lilac Pac-Man).

3. The sector thus created is drawn with Bounding
Box. Copy this sector using Shift+D several times
(while holding down Ctrl), so that they join
together as in Figure (c).

Now add, on top of the ground you've just
created, an additional mesh and activate the Actor
attribute for this, followed by the Dynamic and
MainActor options. You guessed it – this is our
player. Dynamic actors possess additional attributes
too – see Table 1.

We'll tell you more about attributes later – first
we need to define a few sensors for the object,
which for the purposes of our example, we've now
renamed as player.

The link of the signal channels occurs via the
yellow blobs by clicking the mouse on the
output-blob, holding it down, and drawing the
line to the input-ring. The signal channel is

removed by clicking on this. Now create an SCA
combination as in Fig. 2 by adding a Keyboard
type sensor, clicking in the Key field and pressing
the desired key – for an up-arrow select
Uparrow, for example. For the actuator, select an
Object with a Force of 1.0 in Y-direction. Now try
to add rotation-actions by registering suitable
sensors to the left and right arrow keys. For
Torque use a value of around 0.4 (left rotation)
and -0.4 (right rotation) in the third co-ordinate
field (Z). You should also activate the axis display
of the object ([F9]): Axis. Also take note of the L
(for local) button nearby. When activated,
movement occurs with respect to the local co-
ordinate system of the actor – if not then the
global or superordinate co-ordinate system is
used. You can test the control straight away by
pressing the hot key to start the engine: P for

PROGRAMMINGGAME-BLENDER

5 · 2001 LINUX MAGAZINE 91

Table 1: Actor attributes
Do Fh Activate Normal force
Rot Fh Align on the level (e.g. for car on racetrack)
Mass Mass
Size Radius of collision sphere
Damp Damping of movement
RotDamp Damping of rotation

Fig. 2:
Creating a sensor for forward
movement
Using Add, a new sensor, controller
or actuator can be added. Via the
selection menu, the type of sensor
(Always, Keyboard, etc.), or the
logical link of the controller or the
action of the actuator is selected. In
addition to this any drawing can be
entered. With the orange triangle
you can pack in the input form
respectively. You can find additional
details about the display options in
Table 2.

Table 2: Display options
Sel Display all selected objects
Act Display only active object (pale-lilac)
Link Show links too

Play! If you press Esc, play-mode will be ended
and the position of the player will be reset. The
space bar also ends play mode, but in this case
retains the current position of the player.

In the next step we want to test the sector
configuration. Use the space bar to add a camera,
position it at the site of the player. Make the latter
the camera's parent by selecting first the camera,
then the player while at the same time holding
down Shift and then the key combination Ctrl+P
for Make Parent. Rotate the camera so that it's
facing the Y-direction (forwards) of the player.
Now make this camera active by selecting it and
pressing Ctrl+Num+0 (that's 0 on the numeric
keypad). Now switch to TopView with Num+7.
Press P, control the player, and observe the
automatic revealing and masking of the sectors,
depending on visibility, as in Fig. 3. The player
mesh here is in the form of an arrow for the sake
of greater clarity.

When handling sectors there are a few
important details to be noted:
• Always process sectors in edit mode; scaling and

rotation in object mode leads to undesired effects.
• Sectors can and should overlap somewhat,

although interlacing should be avoided.
• Do not apply parenting hierarchies of sectors –

this often causes strange behaviour in the
visibility test.

• The lilac centre point should lie within the
bounding box.

• Visibility is computed using the viewfinder of the
camera, taking into account the clipping values.
Covering areas are not (yet) evaluated; if you
want to suppress the visibility of an adjacent
sector, a gap between the sectors larger than 0.5
units has to be created.

The secret is in the optics – UV
mapping

If you switch the current 3D window into camera
view using Num+0, our test level looks rather bland
– it lacks texture. Nor does our terrain have any
sensible boundary. Like the old idea of a flat Earth,
we fall off the edge of the world as soon as we
leave a marginal sector. For this reason it is best to
create a few level elements in order to add a little
more spice. The simplest option is labyrinthine
systems of passages and underground spaces,
which require little planning from the point of view
of sector organisation. We'll start with simple
passage elements as shown in Figure 4. To do this,
download the demofile from
http://www.section5.de/game/demos/. This
contains what you might call a mini-adventure in
which a goal has to be reached. You should be
careful though, as you could get yourself killed.

Select one of the passage elements and press
the / key on the numeric keypad. This switches you
to LocalView, which means that only selected
objects are displayed. Now press F for Face Select

PROGRAMMING GAME-BLENDER

92 LINUX MAGAZINE 5 · 2001

Fig. 4: Simple passage system

Table 3: Mapping options
Cube cubic mapping
Cylinder cylindrical mapping
Sphere spherical mapping
Bounds to 64/128 Use current view for projection, adjust boundaries to 64x64

or 128x128 respectively
Bounds to 128 As above, boundaries 128x128
Standard 64/128/256 Quadratic mapping 64x64/128x128/256x256
From Window Use current view for projection

Table 4: Draw modes
Tex Textured areas
Tiles Tile image for animated or combined textures
Light Area uses dynamic lighting
Invisible Cannot be seen
Collision Collision detection
Shared Share vertex colours
Twoside Double-sided area
ObColor Use object colour (material)
Halo Halos, always turned towards the camera
Opaque Covering texture
Add Adding texture (halos)
Alpha Alpha texture (water, pane of glass, etc.)

Fig. 3: Visibility of sectors

mode, in which UV texturing is performed. To do
this, open a second window with the Image
Window (Shift+[F10]). If you select the front door of
the level (entrance) for instance, the UV mapping
looks like Fig. 5.

In Face Select mode, areas are selected with
the right mouse button (cross-wire selection via
B also works). The associated UV co-ordinates of
the areas selected are displayed on the right in
the Image Window and can be moved, scaled
and rotated with the normal Blender commands.
But this mapping is a tedious task, especially
with multi-surface objects. Luckily, Blender offers
the option of automatic mapping. Position the
mouse cursor over the 3D Window (Fig. 6 left)
and press U. When you do this, the options
described in Table 3 will be offered. For the
passage system, cube mapping with a size of
0.60 has been used throughout.

Take note of the red and green edge marking
of the active areas. These help in orientation. For
the active areas, Draw modes (view attributes)
are displayed under the paint buttons (see Fig. 6)

You will normally use options selected in the
picture. The ceiling light fitted at the entrance
(lantern) also uses the Tiles, Twoside and Alpha
options, as well as Halo and Add for the middle
areas. If you want to change the Draw Modes of
several areas at once, select the desired faces,
select Draw Mode and then use Copy Draw Mode.
This will copy the attributes of the active areas
onto the selection. In the same way, Copy UV+tex
copies the texture plus mapping, and Copy
VertCol copies the vertex colours.

Areas without any texture assigned are
displayed in the texture view in a hideous pink. In
this view the direction of the area normals is also
relevant, which means the faces are visible only
from the outer side (to which the normal is
pointing). The direction of the area normals of a
fairly uncomplicated or closed object can be
oriented automatically by selecting the desired
vertices or areas via Ctrl+N (or Shift+Ctrl+N). If this

fails, the object might possess overlapping or
superfluous areas internally (as can sometimes arise
with extrusion).

Textures

For each area, an image can be selected or loaded into
the image window using Load. When you do this, note
that the dimensions of the texture must correspond to
a power of two, for example 128x128 or 512x64. It
won't be shown in the texture view otherwise.

In the image window header further options
are shown which activate tile mode for animation
(see Fig. 7). Subdivision is done with the left
number buttons. For an animated texture, which
can also be put together rather elegantly from a
sequence using the montage ImageMagick tool,
activate Anim and set start and end frames with
the number buttons on the right. The Cycle
option has no effect for the moment. The partial
image in the activated tile mode is selected by
holding down Shift then clicking the left mouse
button on the image. For tiled textures, such as
the torch texture in our mini-adventure, the rule
is that the dimension of the subdivision in tile
mode (see Draw Modes) must correspond to a
power of two, but not the total dimension. For a
5x5 subdivision, then, with a tile size of 32x32 this
therefore gives the total quadratic dimension of the
texture image of 5 x 32 = 160.

A bit of dynamics – the physics
engine
The current physics engine evaluates collisions of
actor-objects with areas over a sphere with a radius
Size (see actor attributes in Table 1). In the case of
actors such as deformed Kraken monsters, this
naturally leads to a problem when it comes to
collision detection. The solution to this will have to
wait until Blender 2.1 (with its improved engine)
appears. If we limit ourselves to a first-person shoot-
'em-up there is no need for us to worry too much

PROGRAMMINGGAME-BLENDER

5 · 2001 LINUX MAGAZINE 93

[top]
Fig. 5: UV mapping
(assigning)

[above]
Fig. 6: The paint buttons:
Draw modes

[left]
Fig. 7: Image window: tile
mode

about our own appearance. A spherical shape will
suffice for simple prototyping.
What is interesting though, is the ground and
the movement of the player. In our first test for
the sectors you will certainly have been
bemoaning the all-too smooth movement. The
reason for this lies in the fact that the value for
Damp or RotDamp may be too low – which
applies globally for the associated actor (see
Table 1). If you increase the damp values,
forward and turning movements are braked
more quickly regardless of the ground. Another
globally-applicable value can be found under the
World Buttons: Gravitational acceleration, with
the standard value of 9.81 m/s≤ is the default.

But by experimenting with various masses you
will find a fault in the engine: Heavy bodies fall
faster than light ones. This is due to the fact that
Newtonian physics (f = m * a) has not been
correctly implemented.

Ground material

Each surface can be assigned a so-called dynamic
material: If you use the Material button ([F5]), as
well as the RGB / HSV colour choices, you'll also find
a DYN option (see Fig. 8). Selecting this will reveal
sliders for various parameters, whose functions
we'll explain in a moment. But first here's a useful
snippet of information on physics on an oblique

PROGRAMMING GAME-BLENDER

94 LINUX MAGAZINE 5 · 2001

Table 6: Actuator features
object Apply force etc to object
Constraint Restrict place/orientation to one area
Ipo Play Ipo animation
Camera External camera flying alongside
Sound Play sound unfortunately does not yet function under Linux
Property Change user-defined attribute of an object
Edit Object Change, add, remove or track objects (tracking)
Scene Change scene, restart or change camera

Table 5: Overview of the parameters of dynamic materials
Fh Norm Fh in normals direction of the ground area
Reflect Reflection/elasticity of the ground
Fh Dist Distance of the "soft" or elastic surface from the actual area
Fh Damp Damping of the soft surface (elasticity)
Fh Frict Friction components parallel to the surface
Fh Force Resistance force of the elastic surface

[top]
Fig. 8: Dynamic

materials

[above]
Fig. 9: Normal

forces to actors

[right]
Fig. 10: Bob run

with various
materials

plane: if a body is on a slope, it will obviously slide
downwards (provided static friction is overcome). In
Blender, unfortunately, static friction does not exist
yet, so it is only possible to work with sliding
friction, which is usually dependent on the rate of
slide. We are not going to explain in detail how
downward movement comes about, as we hope
you remember some physics lessons. However, the
key here is normal force (the force which exerts
resistance to the gravitational force of a body on a
surface). In Blender this resistance force is referred
to as Fh. To make an elastic surface possible, this
force is effective from a certain distance, namely Fh
Dist, from the surface. If this distance between actor
and plane reduces, a force of elasticity also acts (Fh
Force). Finally, with Fh Damp the damping of the
elastic resilient movement is controlled. Regardless
of this, using Reflect, a hard elasticity of the surface
at Fh Dist = 0.0 can be set.

Often sliding on a slope is not desirable,
especially in an adventure game with a walking
player. For this reason the resistance force Fh can be
laid in the Z direction by switching off the Fh Norm
option, which cuts out the downwards movement –
see Fig. 9, left. In the case on the right, the Fh Rot
option for the actor has been activated, whereby it
orients itself to the plane.

You'll find another demofile, bob.blend, at
http://www.section5.de/game/demos/. This shows a
bobsled run. It has been assigned several different
materials, each with different friction forces Fh Frict
– see the shaded image (by Z) in Fig. 10: yellow
means Fh Norm is switched off, high Fh Frict. Green
means Fh Norm on, low Fh Frict and blue means
average Fh Frict. Play around a bit with the
dynamics. Also try switching into camera view with
Num+0 and show textures by using Alt+Z.

Interactivity – GamePlay

Let's get back to our adventure. Perhaps you have
already discovered the switch in one of the back
passages, or even solved the puzzle already. As well as
the simple, pre-applied SCA actions such as moving
objects by forces, animations and other things can be
played back using an IPO curve. You will find
additional features in the short overview in Table 6.

Let's examine the example of a switch in the
adventure. When the player stands close enough to
the switch and presses the "operate" key, an
animation of the switch should be played and the
action should be triggered (in this case the light
switching on). To do this, you must be able to assign
status to an object. This is achieved by means of
self-defined property attributes. With the real time
buttons ([F8]) in Fig. 11, a self-defined attribute can
be added using ADD property; enter type, name
and initial value in the corresponding fields.
Property-attributes are also used to define certain
object classes, for example bad, good, etc.

Let's look at the switch in more detail: Select the

switch object – this gives an SCA combination as in
Fig. 11. Note the property attribute called on. The D
("debug") means that in wireframe mode the value
is displayed in the 3D window.

Let's follow the signal paths: When E is pressed
and the Near condition is met, an Ipo animation is
played with the option PingPong, which means that
if tripped again the switch will reset itself. The
property attribute on is also set to the value 1. This
activates an animation for the lamp Lamp.004.

Switching on lamps unfortunately does not yet
occur via Energy-IpoCurve. The near check
functions as follows: If an object with the property
attribute player comes nearer than a distance of Dist
(2.20) this condition is met. If it moves away further
than the Reset distance (2.30) the condition is reset.
Check to see if the player really does have the
property player, and test the near check in the wire
mesh view. When the near event is triggered, the
switch lights up in blue. The switch object can be
more easily achieved with Collision-Sensor.

When playing our mini-adventure, you will
already have discovered which objects have
interactivity, and how the portcullis can be opened.
Take a look at the associated SCAs at your leisure.

Let there be light

The correct lighting of a scene is really the key to a
good atmosphere. This is difficult to achieve within
the game engine, since as yet not all light sources
react exactly as they do in the rendering part. Also,
you have to activate the Light option for each area,
which might have the effect of slowing down the
view. So, if dynamic lighting is not absolutely
necessary, lighting conditions can be simulated by
vertex colours. To do this, position the light sources
as usual, select the desired mesh object and, under
the edit buttons, use Vertcol Make. This will
transfer the lighting conditions as vertex colours
onto the object, which can be checked in the
vertex paint mode (V). This means that additional
shade effects or colourings can be added by
reprocessing with the paintbrush (see also paint
buttons). Reprocessing in vertex paint mode is
usually necessary to make the colour shadings
between the areas slighlty more subtle. Blender
pros might also like to make use of the radiosity
method to generate a realistic lighting model. But if
you do, bear in mind that existing UV-texturing
gets lost during the radiosity process in the current

PROGRAMMINGGAME-BLENDER

5 · 2001 LINUX MAGAZINE 95

Fig. 11: Switch
concatenation

version (2.04) of Blender. Also, if the areas have too
high a level of subdivision in the radiosity
resolution, a level may well look optically perfect,
but from the point of view of speed it can easily
become unplayable.

For dynamic lighting you must, as explained
above, activate the light option for the
corresponding areas. The rule here is that only
lamps that are in the same layer as the mesh object
contribute to the lighting. But previously only
lamps of the type Lamp, Spot and Sun functioned
as desired. In the case of the Lamp type, the
sphere option has no effect yet, but better light
attenuation can be achieved by increasing the
value for Quad1, which controls the, physically
more correct, quadratic attenuation of the
intensity of a point light source.

Tips and tricks

Whew! If you've followed us this far you must be
eager to create your own level by now. Before you
do though, keep the following tips in mind:
• Number of polygons: Always keep the

number of polygons as low as possible. For
characters in particular you should not need
more than 500 faces. The number of vertices or
faces of an object or a scene can be read from
the status line (normally top right in the
window), e.g. Ve: 287, Fa: 458. For an object,
switch into LocalView using Num-[/]. If you want
to risk a more complex game, subdivide the

sector groups into scenes, which should not
contain more than 5000-8000 polygons in total
(depending on the graphics card used).

• Modelling: You can safely model and texture a
level as a whole within an object, and later split it
into individual objects in edit mode with P – the
texturing will not get lost. The same applies for
merging objects using Ctrl+J. What counts most
when modelling is the direction of the area
normals for collision and visibility, otherwise your
player might fall through the floor.

• Texture: Keep the textures in as small a format as
possible. Texture-Mipmapping (automatic
scaling/filtering) will be used only in later versions.

• Clipping/Popping: If your game is played in an
outdoor environment (countryside, motor racing,
etc.), an unwanted side-effect called popping (a
sector appearing suddenly) might occur
depending on the camera clipping used. Eliminate
this by creating some Mist under the world
buttons. To do this, set the initial mist value Sta a
bit lower than the clipping value set using ClipSta
for the camera (the latter can be found among the
edit buttons). Dist may also be fairly small.

In future Blender versions, you can expect a few
new features such as automatic sector
optimisation, better visibility tests and a bit more
automation, especially for simulation of lighting
conditions. The latest news can of course be
found on the Blender Web site. Of course, you
can bet we'll report on any significant
developments here. ■

PROGRAMMING GAME-BLENDER

96 LINUX MAGAZINE 5 · 2001

Important key combinations
RealTime
P Play mode, start game
Esc Stop Play mode, reset positions
Spacebar (within Play mode) As above, but retain positions
View
Num+0 Camera-view
Ctrl+Num+0 Activate selected camera
Z Toggle wire mesh/ area view
Shift+Z As above, with shaded area view
Alt+Z Textured view
Modelling (Edit mode)
B, B twice Cross-wires-/circle selector
E Extrude
P Split selection as object (separate)
Ctrl Snap vertices onto grid or gradually scale/rotate
Ctrl+N Reorient normals outwards (Shift = inwards)
General object processing
G / S / R Displace (grab), scale, rotate
Shift+D copy object or vertex
Alt+D Linked copy: copy object linked
Ctrl+J Merge objects (join)
Ctrl+P Make Parent
Texturing, colours
F FaceSelect mode
U Automatic UV-Mapping
V VertexPaint
Shift+K colour whole object with current vertex colour

The author
Martin Strubel has been an
enthusiastic Blender fan for

two years and is currently
developing games

environments for NaN.

