
PROGRAMMING GNOME

86 LINUX MAGAZINE 5 · 2001

So you’ve just
written yet another

terrific GNOME
program. Great! But

does it, like so many
other great programs,

lack something in terms of
ease of installation? Even the

best and easiest to use programs
will cause headaches if you have to

type in lines like this,

gcc -c sourcee.c gnome-config —libs —cflags 
gnome gnomeui gnomecanvaspixbuf -o sourcee.o

perhaps repeated for each of the files, and maybe
with additional compiler flags too, only to then
demand that everything is linked. And at the end,
do you then also have to copy the finished binary
manually into the destination directory? Instead,
wouldn’t you rather have an easy, portable and
quick installation process? Well, you can – if you
know how.

Front end

The complicated installation scenario we described
above is of course a bit of an exaggeration, since
Makefiles are not hard to write. Using these, all you
need to do is type make in the source text directory,
and the program is created. A ”simple” Makefile for
a short C-program in GNOME can look something

like the one in Listing 1. Not too complex, eh?
Unfortunately, creating a Makefile isn’t always the
best solution, as assumptions on programs
locations, path names and others things may not be
true in all cases, forcing the user to edit the file in
order to get it to work properly.

Listing 1: A simple Makefile for a GNOME 
1: CC=/usr/bin/gcc
2: CFLAGS=`gnome-config —cflags gnome gnomeui`
3: LDFLAGS=`gnome-config —libs gnome gnomeui`
4: OBJ=example.o one.o two.o
5: BINARIES=example
6: 
7: all: $(BINARIES)
8: 
9: example: $(OBJ)
10: $(CC) $(LDFLAGS) -o $@ $(OBJ)
11: 
12: .c.o:
13: $(CC) $(CFLAGS) -c $<
14: 
15: clean:
16: rm -rf $(OBJ) $(BINARIES)

That’s not what you wanted, is it? No, what you
wanted is something much simpler. Something like
this, perhaps?

./configure
make
make install

But hang on, we’re getting ahead of ourselves. First
we need to deal with the source text tree and the

With the help of 

Automake and Autoconf,

you can create easily

installed source code 

text trees. Read on to 

find out how.

Source code trees

IN THE 
VALLEY

OF THE
CODE

THORSTEN FISCHER



PROGRAMMINGGNOME

5 · 2001 LINUX MAGAZINE 87

GNOME-specific properties that must be taken into
account when building one. 

Structure

It is important to have a structure for the source text
tree. The source code itself should be located
separately from other things such as the
documentation or the files for configuration – doing
so makes it easier to get an overview. So the first
thing we’ll do is to create a directory called
example, which will be the site for our tree, then
create a src within it for our code and throw
everything we need in there. To stick with the files
used in the Makefile example in Listing 1, this
means the files example.c, one.c, one.h, two.c and
two.h. The first of these files is shown in Listing 2,
while the other four are empty and are only
included as an example.

Listing 2: example.c
1: #include <gnome.h>
2: #include "one.h"
3: #include "two.h"
4: 
5: int main (int argc, char *argv [])
6: {
7: GtkWidget *app;
8: 
9: gnome_init ("example", "0.0.1", argU
c, argv);
10: app = gnome_app_new ("example", "ExaU
mple");
11:  
12: gtk_widget_show_all (app);
13: gtk_main ();
14: return TRUE;
15: }

Documentation: A tiresome step for every
programmer, but one that co-developers and users
will be grateful for. The following files are the done
thing to put in a source directory:

* Authors: The authors are listed here
* ReadMe: Everything worth reading on thU
e program
* News: News concerning the program
* ChangeLog: Documentation of all changes
* Copying: A copy of the GNU GPL
* Install: Installation instructions 

These are the most important files, but there are
others too. Where do these files come from? The
first three are obviously ones you have to make
yourself, while the last two should preferably be
copied from the automake directory.

Automake

automake and autoconf are two small GNU tools,
which can be obtained from ftp.cs.tu-
berlin.de/pub/gnu/. These tools create your
configuration files for you, which then only have to
be executed by the user in order to get everything
done for them. Users don’t have to have installed

the aforementioned programs themselves, mind
you, as the source text package from our
application is all that is needed for this procedure.
How the two programs should be installed (if you
can’t simply take them from the developer section
of your distribution CD that is) is something you can
probably guess at.

But before we attach automake and autoconf
to our sources, there is still some preparatory work
to be done. We need to create two more files –
namely configure.in and Makefile.am – examples of
which can be seen in Listings 3 and 4.

Listing 3: configure.in
1: AC_INIT(src/example.c)
2: 
3: AM_CONFIG_HEADER(config.h)
4: 
5: AM_INIT_AUTOMAKE(Example, 0.1.0)
6: 
7: AM_MAINTAINER_MODE
8: 
9: AM_ACLOCAL_INCLUDE(macros)
10: 
11: GNOME_INIT
12: 
13: AC_PROG_CC
14: AC_ISC_POSIX
15: AC_HEADER_STDC
16: AC_ARG_PROGRAM
17: AM_PROG_LIBTOOL
18: 
19: GNOME_COMPILE_WARNINGS
20: 
21: ALL_LINGUAS="de"
22: AM_GNU_GETTEXT
23: 
24: AC_SUBST(CFLAGS)
25: AC_SUBST(CPPFLAGS)
26: AC_SUBST(LDFLAGS)
27: 
28: AC_OUTPUT(
29: Makefile,
30: macros/Makefile,
31: src/Makefile,
32: intl/Makefile,
33: po/Makefile.in
34: )

Listing 4: Makefile.am
1: SUBDIRS=macros po intl src
2: 
3: Applicationsdir=$(datadir)/gnome/apps/ApU
plications
4: Applications_DATA=example.desktop

The two files are basically easy to explain. We’ll start
with configure.in.

In the first line autoconf is initialised, with the
name in brackets of any existing file. The main
source file is ideal for this. AM_CONFIG_HEADER
specifies a header file, which is intended later to
carry the specific information for the configured
package and which must also be integrated into the
source text – but more on that later. Note the
different prefixes that the macro names carry: AC_
designates a macro for autoconf, and AM_ (hardly
surprisingly) refers to automake. automake will also



PROGRAMMING GNOME

88 LINUX MAGAZINE 5 · 2001

be concerned with the content of this file, but again
more on that later. It will be initialised in line 5
complete with the name of the package and its
version number. If, during the course of
development, you feel enough has happened to
push this number up a notch, then don’t forget to
note the fact here as well as elsewhere.

In the ninth line, the macros directory is added
to the aclocal search path. This is yet another thing
we haven’t mentioned yet, and it won’t be the last.
It deals with the administration of the macros which
are called up in configure.in (macros can be copied
from the gnome-libs source package, by the way).
This is then followed by the initialisation of GNOME,
various standard macros to search and test a C-
compiler, some header files, POSIX-conformity of
the system and so on. Then in line 19 compiler
warnings are switched on. 

Line 21 is concerned with localisations of the
program; our example assumes the existence of
”de” translations, but any supported locale can be
used. The next line, gettext, is also necessary for
localisation. You don’t have to create international
installations, of course, but it really does add a
touch of professionalism – and is also a great way to
show off your language skills.

The lines 24, 25 and 26 export the variables,
compiler and linker flags, which have been defined
during the processing of the file, so that they can
actually be used in the program. The last lines
following AC_OUTPUT finally specify where
Makefiles should be created. Line 33 is not a typo,
by the way.

Makefile.am

This is a template file, to create – via an
intermediate step when it will be called Makefile.in
– an individual or all completed Makefiles
respectively. The first line lists all subdirectories in
which additional templates are located and/or in
which Makefiles should be created. Lines three
and four specify the directory in which our
program should place its Desktop file, with the aid
of which it will later pop up in the GNOME menus.

One more item of importance now is the
Makefile.am in the subdirectory src, containing the
actual sources of the program. An example can be
seen in Listing 5.
I have adapted this example from Havoc
Pennington’s ‘Gtk+/GNOME Application
Development’. Firstly, the Include-Directories are
defined, and then the source files for the finished
program are named. Finally the flags for the linker
are set, which should amalgamate the compiled
object files.

Et voila

And now it’s almost done! The following
commands now deal with the creation of our
configuration scripts, Makefiles and so on:

frog@verlaine:~/code/example # libtoolize U
--copy --force
frog@verlaine:~/code/example # gettextize —cU
opy —force
frog@verlaine:~/code/example # aclocal
frog@verlaine:~/code/example # autoheader
frog@verlaine:~/code/example # automake —adU
d-missing —copy
frog@verlaine:~/code/example # autoconf

The first command is necessary mainly for creating
libraries. It also copies scripts into the directory,
which are needed elsewhere. —copy requests
copying rather than the creation of Symlinks – the
normal default setting – and —force creates the
files again, even when they already exist.
gettextize gives the package the necessary files
for internationalisation and localisation. aclocal
edits the macros and autoheader makes a file
config.h.in, which is then created by automake
and autoconf. Now, for package creation, we just
have the easy target dist: after calling up
configure a make dist produces a ready-wrapped
parcel, in our example called example-
0.1.0.tar.gz. In the macros directory, you’ll find a
little script called autogen.sh, which can take over
these calls for you. You don’t have to keep
executing these by hand once you have added a
source text file.

Listing 5: src/Makefile.am
1: INCLUDES=$(top_srcdir) -I$(includedir)$U
(GNOME_INCLUDEDIR) \
2: -DG_LOG_DOMAIN=\"Example\" \
3: -DGNOMELOCALEDIR=\""$(datadir)/locale"\" \
4: -I../intl -I$(top_srcdir)/intl
5: 
6: bin_PROGRAMS=example
7: 
8: example_SOURCES=example.c \
9: one.h \
10: two.h \
11: one.c \
12: two.c
13: 
14: example_LDADD=$(GNOMEUILIBS) $(GNOME_LIBU
DIR) $(INTLLIBS)

Listing 6: src/example.c
1: #include <gnome.h>
2: #include <config.h>
3: #include "one.h"
4: #include "two.h"
5: int main (int argc, char *argv [])
6: {
7: GtkWidget *app;
8: 
9: gnome_init (PACKAGE, VERSION, argc, argv);
10: app = gnome_app_new (PACKAGE, _(”ExampleU
”));
11: 
12: gtk_widget_show_all (app);
13: gtk_main ();
14: return TRUE;
15: }



PROGRAMMINGGNOME

5 · 2001 LINUX MAGAZINE 89

Changes in the sources

As the result of the creation of the file config.h
there may be some other changes to the source
text. In particular details of the name of the package
and the version number can now be accessed more
easily. Listing 6 shows the code for the example file
after the changes. The macro _() in the tenth line is
needed because of our desire to internationalise our
package.

The desktop file

In our main source directory, the empty file
example.desktop will still be lurking around. If this is
filled with content, as can be seen from Listing 7,
and if the line 

EXTRA_DIST = example.desktop

is entered in its main Makefile.am, then when the

completed program is installed a Desktop entry will be
added to the GNOME menu hierarchy. This entry may
contain localised names – such as in German as shown
here–, a comment – again localised –, the name of the
executed file, the file type and the fact that the
application should not be executed in a terminal.

Glade

I shouldn’t really be telling you this right at the end,
but a program called Glade (see glade.pn.org/) can
create complete source text trees for you at the
push of a button. This doesn’t mean you shouldn’t
bother working ”by hand”, as described in this
article, though. Why? Well, primarily because Glade
can only create a quite rudimentary tree. As soon as
you want more than Glade has to offer, you have to
get to work by hand anyway, and this will only
makes sense to you if you have some prior
knowledge of doing so, which we’ve just given you.
Indeed, having created your own source tree, you
can sleep soundly at night in the knowledge that if
there is ever any problem then you can make your
own changes in no time, without having to throw
yourself on the mercy of a graphical user interface.

So there you have it – how to create easily
installed packages in a nutshell. Do please give it a
try – you’ll be making the Linux world a better place
for everybody if you do. ■

Length 3.5 pages 1/page ad across bottom right

Listing 7: example.desktop
1: [Desktop Entry]
2: Name=Example program
3: Name[de]=Beispielprogramm
4: Comment=An example
5: Comment[de]=Ein Beispiel
6: Exec=example
7: Terminal=0
8: Type=Application


