
So your Linux system is broken. Maybe you had
problems with the hard disk or a power cut and
then the fsck (filesystem check) of the root
filesystem came up with loads of errors.

If you’re used to using Windows 9x, you’ll
probably know about the Windows emergency
boot disk you can create, but it doesn’t allow you to
do a great deal and it certainly won’t load and run
Windows. However, a basic Linux system can run
off one or more floppy disks – yet still provide a
basic set of essential tools.

If you bought an official Linux distribution from
one of the main suppliers you may have received a
recovery disk with it. Lucky you. If however, like
many people you built a system off a magazine CD
or similar, then you most certainly won’t have one. 

The disk set described here consists of a boot
disk, a disk containing a root filesystem with a small
set of tools and a utility disk to hold a number of
additional utilities. The article assumes you have
ramdisk support enabled in your kernel. If you
haven’t, then you will need to enable it.

Making a boot disk

The first disk we need to create is the boot disk. This
contains a Linux kernel and the kernel loader LILO. It
is possible to create a boot disk which also contains

a root filesystem, (a ‘boot/root’ disk), but because of
the small size of even HD floppy disks, the resulting
system will be severely lacking in essential utilities.

By far the easiest way of creating a boot disk is
by using the command mkbootdisk (see figure 1)
like this: 

mkbootdisk —verbose kernelversion (eg:- 2.2.16)

This command creates a stand-alone boot floppy for
your running system. The most important
parameter is the last one, which is the kernel
version. Note that there are (at least) two versions of
mkbootdisk, one which doesn’t add the rescue
option to /etc/lilo.conf. Whichever version you’ve
got after it finishes, mount the disk and edit the
lilo.conf file until it looks similar to that in figure 2
and then rerun LILO like this:

mount -t ext2 /dev/fd0 /mnt/floppy (/mnt/U
floppy must already exist)
vi /mnt/floppy/etc/lilo.conf
/sbin/lilo -v -r /mnt/floppy
umount /mnt/floppy

The ‘ramdisk’ option in lilo.conf ensures the ramdisk
is big enough for the root filesystem we’ll be

KNOW-HOW BOOTDISK

76 LINUX MAGAZINE 5 · 2001

Creating and Using 
Linux Emergency Recovery Disks

BETTER
SAFE THAN
SORRY

MARTIN MILNER

What would you do if the

Linux system you spent

many hours building

suddenly wouldn’t load? –

due to a mistake during

configuration? Re-install?

What about your precious

data? In this article, we’ll

explain the steps necessary

to create a complete Linux

system which will boot

from floppy disks and

allow you to perform

essential recovery work

like restoring a backup of

your root filesystem. (You

have got one, haven’t

you?)



creating below. The compact option speeds up the
loading process and the append line tells the kernel
to prompt for a root filesystem and load it into the
ramdisk.

Once finished, you will have a floppy disk
containing your current kernel, LILO and a number
of other system files (see figure 3). When you
reboot your machine with this disk inserted, LILO
will give you the choice of booting up off your hard
disk or typing in rescue to boot from floppy. After
choosing rescue, you will eventually be asked for a
disk containing a root filesystem, which is what
we’ll create next.

Creating a root filesystem

The root filesystem must contain everything needed
to support a full Linux system. In other words:
1. The basic filesystem structure.
2. A minimum set of directories. (/dev, /proc, /bin,

/etc, /lib, /usr, /tmp, etc.)
3. A basic set of utilities. (bash, ls, cp, mv, etc.)
4. A minimum set of config files. (inittab, fstab, etc.)
5. Devices. (/dev/hd*, /dev/tty*, /dev/fd0, etc.)
6. Runtime libraries to provide basic functions used

by utilities.
To allow us to have as many files, utilities, etc. as
possible in our root filesystem, we’ll build a
compressed filesystem. Obviously, this means we’ll
have to build it elsewhere. There are a number of
ways of doing this.
1. Use a ramdisk. (/dev/ramdisk or /dev/ram0).
2. Use an unused hard disk partition.
3. Use a loopback device, which allows a disk file to

be treated as a device. (For which you need
specially modified mount and unmount
commands.)

For this excercise, we’ll assume you haven’t got an
unused partition or the disk space to create one and
use a ramdisk. First, prepare the ramdisk:

dd if=/dev/zero of=/dev/ramdisk bs=1k count=U
4000 (approx. 4Mb.)

Next, create the filesystem:

mke2fs -m 0 -i 2000 /dev/ramdisk

mke2fs will automatically detect the space
available. The -i 2000 is to increase the amount of
inodes to make sure we don’t run out. Now make
an appropriately named mount point (if you haven’t
done so before) and mount the new filesystem:

mkdir /mnt/ramdisk
mount -t ext2 /dev/ramdisk /mnt/ramdisk

Copy over the appropriate device files from the /dev
directory like this:

mkdir /mnt/floppy/dev
cp -dpR /dev/hda? /mnt/ramdisk/dev

Repeat the above for all the devices you might
need. Next create the other directories on the
floppy and then copy all the other files into them.
See the boxout for an example of the required files
and directories. Be especially careful that symbolic
links are preserved. (Many of the library files in /lib
are links.)

Config files and finishing off

Some of the config files will need changing to
reflect their intended use. See figure 4 for the
contents of the files that will require editing. When
you’ve done all that and are reasonably happy that
all is well, do the following:

umount /mnt/ramdisk
dd if=/dev/ramdisk of=rootfs bs=1k 
gzip -v9 rootfs

When gzip is finished, rootfs.gz contains the
compressed root filesystem. Make sure that
rootfs.gz will fit on a floppy disk. If it’s too big unzip
it, remount the filesystem as before, delete some
stuff out of it and try the above again.

Finally, it’s time to write it to floppy disk,

dd if=rootfs.gz of=/dev/fd0 bs=1k

KNOW-HOWBOOTDISK

5 · 2001 LINUX MAGAZINE 77

Figure 2 - How /etc/lilo.conf should lookFigure 1 - Using mkbootdisk to make the boot floppy



KNOW-HOW BOOTDISK

78 LINUX MAGAZINE 5 · 2001

Example of contents of a floppy root filesystem
/mnt/ramdisk:
bin dev etc lib mnt mnt2 proc root sbin tmp usr var

/mnt/ramdisk/bin:
bash cat chmod chown cp date dd df echo false grep hostname
id ln login ls mkdir mknod more mount mt mv ps
pwd rm rmdir sh stty su sync touch true umount uname

/mnt/ramdisk/dev:
cdrom cdu31a console fd0 hda1 hda2 hda3 hda4 hda5 hda6 hda7 hda8
hda9 hdb1 hdb2 hdb3 hdb4 hdb5 hdb6 hdb7 hdb8 hdb9 hdc hdc1
hdc2 hdc3 hdc4 hdc5 hdc6 hdc7 hdc8 hdc9 hdd1 hdd2 hdd3 hdd4
hdd5 hdd6 hdd7 hdd8 hdd9 kmem mem null ram ram0 ramdisk sda1
sda2 sda3 sda4 sda5 sda6 sda7 sda8 sda9 sdb1 sdb2 sdb3 sdb4
sdb5 sdb6 sdb7 sdb8 sdb9 tty0 tty1 tty2 ttyS1 zero

/mnt/ramdisk/etc:
conf.modules fstab gettydefs group inittab issue ld.so.cache motd
nsswitch.conf pam.d passwd profile rc shadow shells termcap ttys utmp wtmp

/mnt/ramdisk/etc/pam.d: other

/mnt/ramdisk/lib:
ld-2.1.1.so ld-linux.so.2 libc-2.1.1.so libc.so.6
libcom_err.so.2 libcom_err.so.2.0 libcrypt-2.1.1.so libcrypt.so.1
libdl-2.1.1.so libdl.so.1 libdl.so.1.9.5 libdl.so.2
libext2fs.so.2 libext2fs.so.2.4 libnsl-2.1.1.so libnsl.so.1
libnss_files-2.1.1.so libnss_files.so.2 libpam.so libpam.so.0
libpam.so.0.66 libpam_misc.a libpam_misc.so libpam_misc.so.0
libpam_misc.so.0.66 libproc.so.2.0.0 libpwdb.so libpwdb.so.0
libpwdb.so.0.58 libtermcap.so.2 libtermcap.so.2.0.8 libutil-2.1.1.so
libutil.so.1 libuuid.so.1 libuuid.so.1.2

/mnt/ramdisk/lib/modules/2.2.12-10/block: loop.o

/mnt/ramdisk/lib/modules/2.2.12-10/cdrom: cdu31a.o

/mnt/ramdisk/lib/security: pam_permit.so

/mnt/ramdisk/mnt: cdrom floppy

/mnt/ramdisk/sbin:
depmod fdisk halt head init insmod kerneld lsmod mingetty
mkswap modprobermmod shutdown sulogin swapoff swapon tail update

/mnt/ramdisk/var: log run tmp

/mnt/ramdisk/var/log: wtmp
/mnt/ramdisk/var/run: utmp
/mnt/ramdisk/var/tmp: tmp

Example contents of a Utility disk
mnt/floppy:
bin lib lost+found man sbin share
/mnt/floppy/bin:
cut diff du find gunzip gzip passwd tar vi
/mnt/floppy/sbin: chroot fuser lilo mke2fs mkfs mkfs.ext2



Creating an Utility disk

The Utility disk is a disk full of extra programs which
wouldn’t have fitted on the root filesystem, things
like such as vi, tar, etc. and maybe programs that
reside in /usr/bin and /usr/sbin. These give you the
ability to perform many more activities than would
otherwise be the case. (See boxout for example.)
Simply follow the steps below, and that´s it!

Insert a blank formatted floppy and type,

mkfs -t ext2 /dev/fd0
mount -t ext2 /dev/fd0 /mnt/floppy
cd /mnt/floppy
mkdir bin;mkdir sbin
copy (using cp) the programs you think will bU
e useful to these directories.
cd /;umount /mnt/floppy

Using the Emergency disk set

On rebooting the machine, follow the steps below,
1. Insert the emergency boot disk and wait for the

LILO prompt.
2. At the prompt, you can either boot from the hard

disk as normal (if the Linux system isn’t broken) or
you can type rescue to boot from the floppy.

3. After a while a prompt will appear asking you to
insert the root filesystem disk. Do so and press enter.

4. Wait for the login prompt and login as root. If you
want to use programs off your utility disk, insert it
and call:

mount -t ext2 /dev/fd0 /usr

You can then mount your hard drive filesystems
and/or do whatever needs doing.

In Conclusion

There are many, many more aspects of the above
than can be gone into in a magazine such as this.
The essential read is the ‘Linux Bootdisk
HOWTO’, which can usually be found in
/usr/doc/HOWTO or /usr/share/doc/HOWTO on
your system.(Bootdisk-HOWTO.) It contains a
large amount of detailed information on this
subject and more importantly, what to check if
you run into problems.

However, the above should give you a good
idea of what’s involved and may even help you get a
login prompt first time! Good luck. ■

AD
G. Matter

Figure 3 - The contents of a typical boot disk

Figure 4 - The edited config files for the root filesystem


