
You don't have to be paranoid to be concerned
about the subject of data security in these times of
universal networking and multi-user operating
systems. Woeful experiences with love-crazed e-
mail viruses and Trojan horses that are all too eager
for knowledge leave many a computer user calling
for a powerful weapon. Unfortunately, in reality
some popular aids aren't really worth very much.
Which is why it's worth taking a look at a special
kind of tool that, though primarily intended for
administrators, can certainly be put to use by
ambitious private users of UNIX-compatible
operating systems.

Built on sand

Despite their popularity, conventional protective
shields found in the PC domain, such as virus
scanners or signature scanners, suffer from
weaknesses. One example is the fact that the
properties of new viruses – the so-called virus
signatures – have to be determined by the
manufacturer and incorporated into the customer's
database before the virus scanner can detect the
threat. In view of the number of attack points
(which even operating systems like Linux offer) and
the creativity of resourceful attackers this isn't an
easy problem to resolve.

A different approach to the problem would be a
tool that quickly detects the damage caused by a
security attack. Changes to the file system as a
consequence of viral or human activity may be too
non-specific to be recognised on the basis of
documented virus signatures. In many cases the
only change consists of a hidden back door that a
successful hacker has left behind in the system for
further visits.

Security through inventory

Because these dangerous extras are easy to
camouflage as regular system files, a search can
only be successful given precise knowledge of the
original state of the file system. This is something
that has been known for years. It has led to the
development of tools that take an approach known
as integrity checking. One example that runs in the
UNIX environment is Tripwire.

Tripwire was developed as part of the COAST
Project (Computer Operations, Audit and Security
Technology) of Purdue University, located in West
Lafayette (Indiana). The launch at the start of 1994
(described in the online issue of the business
magazine Forbes) was followed by a victory parade
through the world of UNIX-type operating systems.
This reached a peak of over 300,000 installations

FEATURE TRIPWIRE

68 LINUX MAGAZINE 5 · 2001

Tripwire - an integrity checker, Part 1

SAFETY
FIRST!

KLAUS BOSAU

Tripwire has developed into a highly-regarded

instrument for administrative investigation. It's

hardly surprising. The advanced concepts

employed by this security tool provide

opportunities that go far beyond those of its

various competitors.

and the winning of the "Editors' Choice Award
'99" of the web magazine Linux-World.

The claim made by its developers, Gene Kim and
Eugene Spafford was not exactly modest. The intention
was to provide administrators with a tool that was as
simple as possible to manage but nevertheless flexible,
and which would make it possible to reliably and
rapidly trace any kind of unauthorised or unintentional
intrusion into the file system.

Conception

The difference in principle between an integrity
checker and a signature scanner is evident even
from the name. Whilst the latter aims to detect
already-known programs, integrity checkers are
designed to protect the integrity of data in the
filesystem. They are able to detect any change, not
just the documented changes that are produced

when a known virus attacks a system.
In the simplest case, an integrity checker could

make a backup of the entire filesystem and
periodically compare it with the current content.
However, this isn't really practical. Fortunately, there
is a more elegant method. For effective
identification of a change, a copy of the original
isn't needed. Knowledge of a few special
characteristics of the filesystem is perfectly
adequate. The task when developing Tripwire
consisted of extracting these pieces of data in a way
that would facilitate subsequent monitoring.

Other design aims included a reduction in
volume of the recorded data, and the use of a
process that was not too computation-intensive.
Kim found these properties combined in signature
functions which were until then the domain of
message encryption (so-called One-Way Hash
Functions or Message-Digest Functions) like MD5

FEATURETRIPWIRE

5 · 2001 LINUX MAGAZINE 69

The Arsenal: Comparison of various hash algorithms for Tripwire

Algorithm Data throughput Security Comments

(Pentum/200 MHz) approximate checkpoint

MD5 (R) 7.2 MB/s +++++ Message-Digest 5 Algorithm by Ronald Rivest (advanced development of MD4) -- a more powerful and

currently the most-used hash algorithm. As with MD4, pseudocollisions (collisions for the Compression

Function) are found, but to date its fundamental effectiveness has not yet been refuted.

Snefru (R) 1.4 MB/s ++++ This algorithm, conceived by Ralf Merkle at Xerox PARC, has rapidly become suspect in the four-stage

variant used here despite its so-far undisputed effectiveness, since the two-stage version turned out to

be unusable very early on. The large 128-bit signature should still, however, guarantee good security

performance. (The latest variant to date with 8 rounds is deemed secure.)

CRC-32/CRC-16 9.3/16.2 MB/s ++/+ Both of these robust and fast algorithms were actually designed to detect transmission errors due to

hardware. The size of the signature alone, with just 16 and 32 bit, prohibits any use with large or

important files. But since a spurious file, apart from the appropriate signature, also has to bring with it

the intended functionality to be of any use, it's certainly worth risking its use for less critical objects.

MD4 14.4 MB/s +++ Introduced in 1990 and very fast on RISC processors. It wasn't until 1998 that disenchantment set in:

an easily modified version proved to be reversible. MD4 is now seen as disproved and should therefore

no longer be used to protect important objects.

MD2 300 KB/s ++++ Unusually slow, since it was the only one designed for antiquated 8-bit processors. Although MD2 is

the oldest of the three message-digest algorithms from RSA, until now its effectiveness has been

unquestioned. However, for a modified version the principal risk was revealed to be a constructive (and

thus time-saving) determination of cases of collisions.

SHA 5.4 MB/s +++++ The "Secure-Hash-Algorithm" from NIST [11] is, like most hash algorithms, structurally related to MD4.

It was superseded in 1994 by SHA-1, which was supposed to correct an undocumented weak point.

The large 160-bit signature nevertheless still makes this a good choice, even for security-critical objects.

(The persistent rumours about a deliberately-implanted weak point, in view of the paltry state of

knowledge in the theory of hash functions, are somewhat impudent. NASA, by the way, prefers this in

its in-house Tripwire installation to the originally more popular Snefru. [12])

Haval 10.7 MB/s ++++ Was created in 1992 at the University of Wollongong by Yuliang Zheng [13] . It is the only one to hold

both a variable signature size (128, 160, 192, 224 or 256 bit), as well as a variable number of work

steps (3, 4 or 5). (The message is split into blocks of 1024 bits which are then processed in 3, 4 or 5

rounds by the Compression Function.) This means a total of 15 different variants of the algorithm are

available for practical applications. In the Academic Source Release the 4-stage variant with 128-bit

signature format is used.

RIPEMD-160 4.9 MB/s ++++++ The "RACE Integrity Primitives Evaluation" algorithm [14] from the EU project of the same name is the

(Tripwire-De-Luxe) offspring of a collaboration by well-known European cryptographers (Hans Dobbertin, Antoon

Bosselaers and Bart Preneel) from 1996. The unconventional idea of two pipelines working in parallel

after the MD4 model was first realised in RIPEMD (3 rounds, 128 bit). RIPEMD-160 represents a massive

advance, which is also intended to take into account the most extreme demands made on collision

freedom. In a total of five rounds each with 16 individual operations, a hash value of 160 bits is

calculated. Together with SHA-1, RIPEMD-160 is currently viewed as the most powerful hash algorithm in existence.

from RSA Data Security, Inc. or Snefru from Xerox
PARC. The departure from the intended use of such
algorithms for effective protection of a filesystem is
a central component of Tripwire.

Some advantages

An attractive quality of the integrity checker is the
ability of the user to exert control over the process. It
is easy to adjust the security performance according
to your preference or need. There is no need to go to
great lengths to maintain as complete as possible a
library of virus signatures, as is necessary with a
signature scanner. An integrity checker demands
little attention. Once installed, maintenance is
limited to a few actions that need only be performed
when software is added or removed.

The performance of current signature algorithms
turns the integrity checker into the ideal instrument
for perpetuation of evidence. This is something that
could open up entire new perspectives in the near
future, especially in the corporate environment
where the economic damage caused by a hacker
attack could be considerable. A One-Way Hash
Function has all the qualities of a piece of evidence
that could be used in court. (Note: usually the
Message-Digest of a message encoded using a
private code is known as the "signature" . The term
"signature" here has the same meaning.)

Step by step

The procedure for use can be broken into three
parts: initialisation, integrity test and maintenance.
For initialisation, a reference database
tw.db_hostname is created in accordance with
parameters in the configuration file tw. config. This
database contains an exact description of all
security-relevant objects in the local filesystem. Each
object, together with attributes such as the
modification timestamp, is assigned its own
"fingerprint" in the form of a freely definable

signature cocktail. The choice of information to be
recorded for each object is made in tw.config. This
is done by means of assigning so-called select-
masks, which allows the extent of monitoring to be
tailored to the respective importance and task of
each object and the individual security
requirements of the administrator.

It is of crucial importance at this stage that no
viruses or other rogue software components are
present in the filesystem. This is tricky, but not
impossible to ensure, even for ageing systems. A
preliminary manual check of critical files such as
passwd or inetd.conf can assure their future
integrity and erect a first barrier against incursion,
which can be successively reinforced. The evaluation
of the current security situation is ultimately the
reserve of the administrator.

Integrity test

In accordance with the configuration laid down in
tw.config a second databank is calculated. This, like
a snapshot, describes the current status of the
filesystems which can be referred to at any desired
date. By comparing this with the reference
database, information about added or deleted
objects will come to light.

FEATURE TRIPWIRE

70 LINUX MAGAZINE 5 · 2001

Listing 1: output example of an altered file
changed: -rw-r--r-- root 788 Aug 1
16:49:52 2000 /etc/hosts
Attr Observed (what it is)
Expected (what it should be)
=========== =============================
=============================
/etc/hosts

st_mtime: Tue Aug 1 16:49:52 2000
Tue Aug 1 16:31:21 2000

st_ctime: Tue Aug 1 16:49:52 2000
Tue Aug 1 16:31:21 2000

md5 (sig1): 1gLd3EYIaQg04IweV.AMJS
3zbqWhNQTo.9Wytoqhgxik
snefru (sig2): 0BfGPDfQVve2bm7VbHYD4S
0JCn1vTUQ8apn©eQ:Gc5x

Figure 1: Block
diagram of the basic

functionality

Changes to individual objects are detected by
comparing the corresponding entries from both.
Unlike added or deleted objects, which the integrity
report clearly identifies, changes only appear in the
report if specified in the corresponding select mask.
This allows the administrator to distinguish between
changes that are potentially dangerous and legitimate
changes which are the result of normal use of the
system. Items are logged in the integrity report using
the comments added, deleted and changed (Fig. 1).

Listing 1 shows a case where both modification
timestamp and inode timestamp (st_mtime and
st_ctime), as well as both associated signatures (md5
and snefru) differ from the original. This could occur
if a text file was loaded into an editor, changed and
saved using the same name with the same size.

The integrity test should be performed
automatically, at regular intervals of hours or days,
using a cron job. By means of command line options
the time-consuming calculation of signatures can be
omitted. This makes it possible, in situations such as
the deletion of an application, to obtain a rapid
overview of any irregularities in the filesystem.

Maintenance

Changing requirements can make restructuring of
the filesystem necessary. In this event the reference
database must also be updated. Tripwire incorporates
the necessary functionality. The addition or removal
of even complex packages is a simple exercise.

Installation

The source code of Tripwire version 1.2 from 1994,
which is free, is still to be found on the website of
the COAST Project as a compressed TAR archive. At
the end of 1997 Gene Kim's company, Tripwire
Security Systems, Inc. received an exclusive licence

for advanced development and marketing from
Purdue University. Apart from the product line
intended for commercial marketing ("HQ
Connector Bundle") TSS also offers on its website
the so-called "Academic Source Release" (Version
1.3.1) as source code. This differs from the
aforementioned COAST version mainly in a few
detail improvements. This version, which is
adequate for most uses, has been released for use
on single-user systems. This is the version to which
we will be referring in the following.

Anyone who would prefer to avoid handling the
source code may download the free binaries for the
prize-winning Linux version 2.2.1. What TSS claims

FEATURETRIPWIRE

5 · 2001 LINUX MAGAZINE 71

Steps for use of Tripwire
Initialization (single user mode!) tripwire --initialize

Creates the reference database. This is placed in the sub-directory./databases and must be moved by
hand to DATADIR because Tripwire expects a read-only medium here.

Integrity test tripwire
Prints a report of all inconsistencies detected on the screen. If the output is large, or in case of use as a
cron job it is advisable to divert the output to a file. The display of information can be regulated using -
-quiet (single-line outputs) and --verbose (isochronous output). All signatures are usually output in
Base64 notation. --print-hex forces the output as a hexadecimal number, which becomes necessary if
signature comparisons between incompatible systems are required.

Maintenance (single user mode!) tripwire --update [path]
Updates the reference database if the content of a specified directory has been changed as the result
of administrative operations such as installation, uninstallation etc. Individual files or entire directories
can be specified as arguments. Since this means the entire content of a directory can be declared as
safe, great care is recommended when using this command! (In an emergency the old database, which
Tripwire archives after each update as tw.db_hostname.old in ./databases , can be restored.)

Interactive updating tripwire --interactive
Interactive updating of the reference database is the most common maintenance method. Any
inconsistencies which have been detected result in a prompt for updating. This requires the presence
of the administrator, of course, but in the end it is a better solution, since each case can be dealt with
individually.

Table 1: Tripwire platforms
386BSD 0.1
Apple A/UX 3.x
AT\&T System V
BSDI BSD/386 beta
ConvexOS 9.1
DC/OSx (SVR4) 1.1 OSx 5.1
Domain/OS SR10.x AIX 3.x
dynix/PTX 2.0.x
Dynix 3.x
EP/IX 1.4.3
FPX 4.3.3
HP/UX 8.x, 9.x
IRIX 4.x
Linux 0.99.14 und newer
Mach (NeXtstep) 2.x, 3.x OSF/1 1.0.4
Mach 2.x
SunOS 4.0.3
SunOS 5.x (Solaris 2.x)
Ultrix 4.x
Umax V 2.4.1P3
Unicos 6.1.6 OSF/1 (alpha)
Xenix 2.2.4
Xenix System V 386

to be a "functionally compatible" variant of the
source code has been freely available since October
of last year. This is subject to the GPL and is available
for downloading from VA Linux Systems. Any
interested C expert is welcome to participate in
further development.

With this departure from its previous corporate
policy TSS is promising a considerable additional
development push. The prestige of taking part in
the development of a market-leading, even
trailblazing security tool, ought to attract quite a
few ambitious developers from all over the world.
The binaries for this version will be available from
the still dew-fresh website of the Tripwire Open
Source Project, which is also to function as a central
starting point for all collaborators. Users of other
operating systems can only dream of this utopia.
Buying the commercial full version represents an
investment of around £400 per host.

A few Linux distributors such as SuSE have
already taken into account the growing security
awareness of their clientele and included versions of
Tripwire on their CDs. A glance into the file jungle
of your Linux distribution might therefore save you
some download time!

Tripwire has been written in portable C. It can
run on more than twenty UNIX derivatives. The
procedure for installation of the package is standard
and should pose no insoluble problems. For rapid
installation on a Linux platform a bullet-point type
brief introduction is given.

A bit of manual labour

The basic installation requirement is the presence
of the well-known packages "Flex" (production
of lexical scanner) and "Bison" (parser
generator). All system-specific alterations are
made in the two following and largely self-
explanatory files:

Makefile: Here, the destination DESTDIR
(tw.config and binaries), DATADIR
(tw.db_hostname), MANDIR (Manpages) locations
should be entered. For DESTDIR and DATADIR, for
security reasons, only directories requiring root
permission can be considered! (The access rights
defined under install could be made a bit more
restrictive: 400 for tw.config, 500 for DESTDIR, 600
for DATADIR.) Also, by uncommenting LEX = flex
and YACC = bison -y both packages mentioned will
be used.

include/config.h: Because, in the integrity
test, there is a risk that spurious data could be
used simply by changing two paths, the
destinations of tw.config and tw.db_hostname
are compiled into the executable file. The
directories already selected, DESTDIR and
DATADIR must therefore also be made known as
CONFIG_PATH and DATABASE_PATH prior to
conversion at this point. No further entries need
be made here. The standard example

configs/conf-svr4.h, which provides for further
alterations required by some operating systems,
should be suitable for most Linux distributions.

After changing to single user mode (which
prevents any unauthorised accesses in this
delicate phase) it should be sufficient to run make
&& make test. This should leave two executable
files tripwire and siggen in the directory src, and
then start a test of the binaries created. In the test
phase, which takes a few minutes, the largely self-
explanatory test report (Listing 2) should be
watched closely. Compilation errors, which could
occur as a result of incompatible libraries or
compilers, could critically affect the security
performance in later operation. make test
&>~/TestProt would not be a bad idea!

Unfortunately the value of this test is limited by
the fact that there is no adequate way to check the
authenticity of the source text. The "original"
COAST version shows how it's done: add the
Message-Digest of the package, encrypted with the
private cipher of a guarantor, as a separate file. The
MAC (Message Authentication Code) must be put
on at this point, and should for a company such as
TSS, which wants to prove high standards in
matters of data security, really be more than pure
theory! The manipulation of the source code of a
security tool by rogues could have unimaginable
consequences. If there is doubt as to the
authenticity of the code, the only way to lay your
worries to rest is a time-consuming one. Sifting
through ten thousand lines of source text may not
be to everyone's taste.

Using make install eliminates the tedious
installation of the two binaries, the Manpages, and
an admittedly rudimentary model for tw.config. All
remaining traces of the test run, which Tripwire
tends to leave in the /tmp directory, should then be
removed. Any concerns may be mollified with the
help of the attached FAQ (see also Points 2.0 and
2.1 in the README). NB: contrib/README.linux is
obsolete and therefore misleading!

Installation should not be difficult even in other
environments. Ported contains ready-made entries
and recommendations concerning the most suitable
compiler options for a whole range of known
platforms. Additional information can be found in
configs/, which contains a wide selection of
preprepared INCLUDE-files and a few somewhat
basic models for tw.config .

Rehearsing alert

One further comment on the test report. In the
final test phase (TSS-Shellscript test1.sh) numerous
inconsistencies are shown which give the
impression that an undesirable change might have
occurred. In fact, this is a true blue integrity test of
the distribution against a reference database which
is included in the package. This occurs not so much
to check the integrity of the distribution, but rather

FEATURE TRIPWIRE

72 LINUX MAGAZINE 5 · 2001

FEATURETRIPWIRE

5 · 2001 LINUX MAGAZINE 73

Listing 2: Self test
=== test0.sh: DESCRIPTION

This shell script exercises all the signature routines included in
the Tripwire distribution. This suite is run on a series of files
created by the authors of the signature routines.
=== test0.sh: BEGIN ===
=== test0.sh: PASS ===
=== test.twpre.sh: DESCRIPTION

This script exercises the Tripwire preprocessor, testing correctness
variable expansion and include files.
=== test.twpre.sh: BEGIN ===
Tripwire(tm) ASR (Academic Source Release) 1.3.1
File Integrity Assessment Software
©1992, Purdue Research Foundation, ©1997, 1999 Tripwire
Security Systems, Inc. All Rights Reserved. Use Restricted to
Authorized Licensees.
=== test.twpre.sh: PASS ===
=== test.update.sh: DESCRIPTION

This shell script exercises all the Tripwire integrity checking
and database update functionalities.
=== test.update.sh: Setting up auxiliary scripts ===
=== test.update.sh: BEGIN ===
../src/tripwire -loosedir -c /tmp/twtest/tw.config -d /tmp/twtest/tw.db -i all
=== test.update.sh: testing GROWING (safe) files ===
=== test.update.sh: testing GROWING (unsafe) files ===
=== test.update.sh: testing ADDED files ===
=== test.update.sh: testing DELETED files ===
=== test.update.sh: testing CHANGED files ===
=== test.update.sh: testing input schemes ===
=== test.update.sh: tw.config from stdin
=== test.update.sh: database from stdin
=== test.update.sh: testing complex UPDATE cases
=== test.update.sh: changed ignore-mask (UPDATE file)
=== test.update.sh: changed ignore-mask (UPDATE entry)
=== test.update.sh: testing UPDATED files (7 cases)
=== test.update.sh: case 1: update: add new file ===
=== test.update.sh: case 2: update: delete file ===
=== test.update.sh: case 3: update: update file ===
=== test.update.sh: case 4: nonsense case (skipping) ===
=== test.update.sh: case 6: update: delete entry ===
=== test.update.sh: case 5: update: add entry ===
=== test.update.sh: case 7: update: update entry ===
=== test.update.sh: PASS ===
=== test.inter.sh: DESCRIPTION

This shell script exercises all the interactive update of Tripwire
databases.
=== test.inter.sh: Setting up auxiliary scripts ===
=== test.inter.sh: BEGIN ===
../src/tripwire -loosedir -c /tmp/twtest/tw.config -d /tmp/twtest/tw.db -i all
=== test.inter.sh: testing interactive update ===
=== test.inter.sh: testing complex UPDATE cases
=== test.inter.sh: changed ignore-mask (UPDATE file)
=== test.inter.sh: changed ignore-mask (UPDATE entry)
=== test.inter.sh: testing UPDATED files (7 cases)
=== test.inter.sh: case 1: update: add new file ===
=== test.inter.sh: case 2: update: delete file ===
=== test.inter.sh: case 3: update: update file ===
=== test.inter.sh: case 4: nonsense case (skipping) ===
=== test.inter.sh: case 6: update: delete entry ===
=== test.inter.sh: case 5: update: add entry ===
=== test.inter.sh: case 7: update: update entry ===
=== test.inter.sh: PASS ===
=== test.escape.sh: DESCRIPTION

This is similar to the Tripwire update tests, but escaped
filenames are specifically exercised.
=== test.escape.sh: Setting up auxiliary scripts ===
=== test.escape.sh: BEGIN ===
../src/tripwire -loosedir -c /tmp/twtest/tw.config -d /tmp/twtest/tw.db -i all
=== test.escape.sh: testing complex UPDATE cases
=== test.escape.sh: changed ignore-mask (UPDATE file)
=== test.escape.sh: changed ignore-mask (UPDATE entry)
=== test.escape.sh: testing UPDATED files (7 cases)

to ensure that the signature functions work
correctly. Since the reference database supplied by
TSS was not encrypted, it would be an easy task for
a hacker to change the signatures concerned in the
reference databank!

The report quite correctly shows all 161 files
of the distribution as "changed" , because inode
number (st_ino) and inode timestamp (st_ctime)
in the filesystem of the destination computer
don't match their original values, which were
valid at the time of creation of the reference

databank by TSS. Changed signatures should, on
the other hand, certainly give you something to
think about, since only arithmetic errors could
have caused them. This can be clarified using
grep -n "md5" ~/TestProt .

In the next article we will examine the potentially
problematic configuration of Tripwire . Unlike a virus
scanner, which makes few demands in this respect (but
is also scarcely any use) an integrity checker demands a
lot of effort on the part of the user. The use of this
unusual set of tools will be explained later. ■

FEATURE TRIPWIRE

74 LINUX MAGAZINE 5 · 2001

=== test.escape.sh: case 1: update: add new file ===
=== test.escape.sh: case 2: update: delete file ===
=== test.escape.sh: case 3: update: update file ===
...
=== test.escape.sh: PASS ===
=== test1.sh: DESCRIPTION

This shell script tests all the Tripwire signature routines.
Consequently, this test may take a while to complete, because even the
slowest signature routines are exercised. On a 200 MHz Intel Pentium
machine, this test takes 15 seconds to complete.

This test suite will ascertain whether the byte-ordering and
machine-dependent routines are working correctly.
=== test1.sh: BEGIN ===
creating: ./tw.db_TEST.@
creating: ./@tw.config
Tripwire(tm) ASR (Academic Source Release) 1.3.1
File Integrity Assessment Software
© 1992, Purdue Research Foundation, © 1997, 1999 Tripwire
Security Systems, Inc. All Rights Reserved. Use Restricted to
Authorized Licensees.
Phase 1: Reading configuration file
Phase 2: Generating file list
Phase 3: Creating file information database
Phase 4: Searching for inconsistencies
###
Total files scanned: 161
Files added: 0
Files deleted: 0
Files changed: 161
###
Total file violations: 161
###
changed: drwxr-xr-x root 1024 Sep 27 23:00:31 2000 /root/tw_ASR_1.3.1_src
changed: -rw-r----- root 2201 May 4 10:31:00 1999 /root/tw_ASR_1.3.1_src/COAST.info
changed: -rw-r----- root 5441 May 4 10:31:00 1999 /root/tw_ASR_1.3.1_src/FAQ
...
Phase 5: Generating observed/expected pairs for changed files
###
Attr Observed (what it is) Expected (what it should be)
=========== ============================= =============================
/root/tw_ASR_1.3.1_src

st_ino: 128630 605814
st_uid: 0 1016
st_size: 1024 0
st_mtime: Wed Sep 27 23:00:31 2000 Fri Apr 30 23:03:53 1999
st_ctime: Wed Sep 27 23:00:31 2000 Fri Apr 30 23:03:53 1999

/root/tw_ASR_1.3.1_src/COAST.info
st_ino: 128632 605816

st_ctime: Wed Sep 27 22:51:45 2000 Tue May 4 15:20:44 1999

/root/tw_ASR_1.3.1_src/FAQ
st_ino: 161308 605817

st_ctime: Wed Sep 27 22:51:45 2000 Tue May 4 15:20:44 1999
...
=== test1.sh: END ===
removing: ./tests/tw.db_TEST.@
removing: @tw.config
...

Info

[1] The "Tripwire-Story":
http://www.forbes.com/tool/ht

ml/toolbox.htm
[2] Gene Spafford's Homepage:
http://www.cerias.purdue.edu/

homes/spaf
[3] "RSA Data Security, Inc.":
http://www.rsasecurity.com

[4] "Xerox Palo Alto Research
Center":

http://www.parc.xerox.com/pa
rc-go.html

[5] Snefru and accessories
(Xerox):

ftp://arisia.xerox.com/pub/hash
[6] "COAST Project":

http://www.cerias.purdue.edu/
coast

[7] "Tripwire Security Systems
Inc.":

http://www.tripwiresecurity.com
[8] Future "Tripwire-forge":

http://sourceforge.net/projects
/tripwire [9] "Tripwire Open

Source Project":
http://www.tripwire.org

■

