
Normally, the first question to be asked is: ”Why
XML? - Just because it happens to be hyped?”

”And what do all those abbreviations mean
anyway: XML, XSL, DTD, and XSLT etc?”. Everyone
is talking about XML - at least about its look and
feel, but nobody quite seems to know what it is
used for. XML is short for ”eXtensible Markup
Language” with the emphasis firmly placed on
‘extensible’ in contrast to HTML, which (although it
has grown with each consecutive version) still
comprises a fixed set of permitted tags. So you can
define your own tags. Additionally, XML files
comprise only textual content and logical
characteristics or, more simply, meaning. XSL
(eXtensible Stylesheet Language) or XSLT
(eXtensible Stylesheet Language Transformations)
are required for output. Often this will be
performed by using HTML tags within XSL

MAIN FEATURE COCOON/XML

32 LINUX MAGAZINE 6 · 2001

Serving XML with Apache Cocoon

BRING ON
THE

DANCING
GIRLS...

MARKUS KRUMPCK

Everyone has heard of XML, but

how can you use it and how do you

transfer data to clients that do not

speak XML? That is the topic of our

current article, where we will be

looking into the Apache Groups

Web Publishing Framework.

032cocoon.qxd 31.01.2001 11:10 Uhr Seite 32

documents. Again the approach differs from HTML
documents where content and formatting
instructions are combined in a single file.

Developing Web pages in XML is normally more
time consuming than using HTML as you need a
document each for content and for output via XSL.
You will often see a separate document with tag
definitions known as DTD (or Document Type
Definition). One advantage of applying logical tags
to data is that it allows applications to browse and
parse the documents. At the same time the data
and its display characteristics are stored separately,
allowing different people to work on a document’s
content or appearance.

Unfortunately, there are very few XML/XSL
editors available at present, and that leaves you
with very little choice but to fire up your favourite
text editor. At the time of writing XML looks like it
might just become THE standard data exchange
format.

Now you might ask what tools you can use to
display XML or XSL documents considering the fact
that current browsers provide only limited support
(Mozilla) or refuse to comply with specifications
(Internet Explorer).

This is the point at which Cocoon enters the
scene:

Why Cocoon?

Cocoon is a publishing framework for Web content
that is currently under development by Stefano
Mazzocchini and others as part of an Apache XML
project. Simply put, Cocoon brings XML
functionality to the server. In other words Cocoon
processes XML/XSL documents, allowing them to be
displayed by any client. The client does not even
need to be a browser - it could be a mobile phone,
for example. By defining different stylesheets for the
same content you can change the way a document
is displayed by the client. You might need to do this
to provide better support for browsers or simply to
display content in a different format (XHMTL,
HTML, XML, WML, or PDF for instance).

As browsers begin to provide native support for
XML/XSL, in future there will be no need to perform
conversions of this kind. The data can be displayed
natively without the need to perform the
intermediate step of converting to HTML. One
further advantage is the fact that the same data can
be displayed ‘on the fly’ in multiple formats, and
this would be extremely difficult to achieve and
support without XML/XSL.

Separating content (which is stored in XML
documents), business logic (stored in eXtensible
Server Pages) and layout (client-based presentation)
- and Cocoon does provide support for this
functionality - makes it easier to develop and
support complex Web projects. These three areas
can be managed independently by different people
- no more stepping on each other’s feet, provided

you keep to the pre-defined interfaces, that is.
By the way, Science Fiction fan and author of

Cocoon, Stefano Mazzocchi, was inspired by the
movie Cocoon, which was shown on TV while he
was working on an idea for an XSL rendering
servlet. You may recall that in this movie senior
citizens were wrapped in a kind of cocoon before
emerging to a new life, just like butterflies.

Functionality

XML documents are processed using an XML parser
(Cocoon uses Apache Xalan, which was named
after a rare musical instrument and developed as
part of the

XML Apache Project) and placed in an internal
tree structure known as the Document Object
Model (DOM). The data structure can be accessed
by one of a whole bunch of processors (XSP
processor, SQL processor, LDAP processor and DCP
processor amongst others) that processes and
manipulates the data following the guidelines of
the host applications logic. Following this step an
XSLT processor (Apache Xerces) is used to generate
output for the clients.

XML 101

XML documents always begin with <?xml
version=”1.0”?> followed by any number of
procession instructions (PI) that use the syntax
<?target instruction?>. Instructions tell the
application how to parse i.e. process the document
content: For example,
<?cocoon-process type=”xsp”?> or
<?xml-stylesheet href=”sample.xsl”
type=”text/xsl”?> are typical PIs.

The XML tag and PIs are the only tags that do
not need to be terminated by an end tag. This is
followed by the root element that comprises any
other elements. XML documents must be well-
formed, that is, you need to pay attention to proper
nesting (the first tag to be opened is the last to be
closed). EVERY tag must be terminated by an end
tag (in contrast to HTML where tags such as <hr>,

 or <p> are often used without an end tag).
However, you can define empty tags, that is, tags
that do not have any text content but consist
entirely of attributes (similar to the tag in HTML).

To avoid having to type tags of this type twice, a
tag can be self-terminating, for example:<author
name=”Markus Krumpck”/>. You should also be
aware that XML documents are case-sensitive.

A well-formed XML document can be valid,
although this is not mandatory. A document is said
to be valid if it complies to a Document Type
Definition (DTD). DTDs contain structural definitions
for a document – for example, they might define
what kind of elements can be used in a document.
In addition, a DTD provides guidelines for nesting

MAIN FEATURECOCOON/XML

6 · 2001 LINUX MAGAZINE 33

032cocoon.qxd 31.01.2001 11:10 Uhr Seite 33

elements, stipulates the attributes associated with
certain elements and specifies the valid attribute
values. You can specify a DTD within the XML
document itself, although it is more common to
refer to an external file. DTDs may be replaced by
XML schemas.

Installation

Before you install Cocoon, you must ensure that
you have a functional servlet engine. You could use
any servlet engine, such as Tomcat. Both the
Cocoon manual and Java and XML, Chapter 9
(which can be read online) contain further details.
For the purpose of this test we used SuSE 6.4 with
JDK 1.1.7 and Apache JServ 1.1, although similar
results can be obtained with other distributions.

First and foremost, download the 2.5 MB
Cocoon Package (1.7.4) from the Apache XML
Project Web site. This package contains classes for
Xalan, Xerces and FOP to avoid inconsistencies
caused by newer versions of these programs being
developed separately from the Cocoon project.

Note: The Cocoon installation guide contains
an error at this point, referring to

.../cocoon/BIN/cocoon.properties instead of
.../conf/cocoon.properties):

/etc/httpd/jserv/jserv.conf:
Action cocoon /servlet/org.apache.cocoon.Cocoon
AddHandler cocoon xml

After running the commands in the Installation
script text box and modifying the files shown in the
Configuration files text box, you need to create a
directory for Cocoon to store its Java classes in - that
is, the user ID under which the web server is
running must have write access to the directory -
and point to the directory in your configuration
files. When I tried to use the directory specified in
default configuration, ./respository (relative to the
web server root), I kept on getting ”Can’t create
store repository: //./repository. [...]”, although I had
assigned global read and write privileges. I finally
used an absolute path name for the directory and
re-named it to temp to resolve this problem:

mkdir -p /usr/local/httpd/htdocs/temp
chmod a+rwx /usr/local/httpd/htdocs/temp

/usr/local/java/cocoon/conf/cocoon.properties:
processor.xsp.repository = /usr/local/httpd/U
htdocs/temp

In /etc/httpd/httdp.conf the line should not contain:

LoadModule action_module /usr/lib/apaU
che/mod_actions.so

any comment characters - this is normal for SuSE
6.4.

After restarting Apache (/sbin/init.d/apache
restart) you should be able to type in the following
URL http://localhost/Cocoon.xml in any browser to
display the output shown in the picture.

After using the following command:

cp -R /usr/local/java/cocoon/samples/ /usr/U
local/httpd/htdocs/

to copy the sample files that accompany the
Cocoon package to the htdocs directory on your
Web server, you can also load the following page

http://localhost/samples/index.xml for an
overview of the features that Cocoon has to offer.

HelloWorld

Let’s look at an example - the ubiquitous HelloWorld
- to explain things. The example is taken from the
sample files that accompany the distribution. (hello-
page.xml and hello-page-html.xsl are just two plain,
old XML and XSL documents, except for the special
Processing Instruction (<?cocoon-process
type=”xslt”?>) in the XML document that tells
Cocoon to pass the document to the XSLT
processor, that is, to transform the document. The
output format is specified in the stylesheet using:

<xsl:processing-instruction name="cocoon-foU
rmat">type="text/html"

The XML document also contains a sample DTD that
was embedded in the document (refer to the lines
starting with <!DOCTYPE page [through]>).

You can generate client-specific output using
different stylesheets, the advantage being that you

Pic.: Cocoon following
successful installation

MAIN FEATURE COCOON/XML

34 LINUX MAGAZINE 6 · 2001

032cocoon.qxd 31.01.2001 11:10 Uhr Seite 34

MAIN FEATURECOCOON/XML

6 · 2001 LINUX MAGAZINE 35

Installation script

tar -xvzf Cocoon-1_7_4_tar.gz
cd cocoon-1.7.4
mkdir -p /usr/local/java/cocoon
cp -R * /usr/local/java/cocoon
cd /usr/local/java/cocoon/lib
ln -s xerces_1_0_3.jar xerces.jar
ln -s xalan_1_0_1.jar xalan.jar
ln -s fop_0_12_1.jar fop.jar

Configuration files

/etc/httpd/jserv/jserv.properties:
wrapper.classpath=/usr/local/java/cocoon/bin/cocoon.jar
wrapper.classpath=/usr/local/java/cocoon/lib/xerces.jar
wrapper.classpath=/usr/local/java/cocoon/lib/xalan.jar
wrapper.classpath=/usr/local/java/cocoon/lib/fop.jar
/etc/httpd/jserv/zone.properties:
servlet.org.apache.cocoon.Cocoon.initArgs=properties=/usr/local/java/cocoon/conf/cocooU
n.properties

hello-page.xml

<?xml version="1.0"?>
<?xml-stylesheet href="hello-page-html.xsl" type="text/xsl"?>
<?cocoon-process type="xslt"?>
<!DOCTYPE page [
<!ELEMENT page (title?, content)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT content (paragraph+)>
<!ELEMENT paragraph (#PCDATA)>
]>
<!— Written by Stefano Mazzocchi "stefano@apache.org" —>
<page>
<title>Hello>/title>
<content>
<paragraph>This is my first Cocoon page!>/paragraph>
</content>
</page>

hello-page-html.xsl

<?xml version="1.0"?>
<!— Written by Stefano Mazzocchi "stefano@apache.org" —>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="page">

<xsl:processing-instruction name="cocoon-format">type="text/html"
<html>
<head>
<title>
<xsl:value-of select="title"/>
</title>
</head>
<body bgcolor="#ffffff">
<xsl:apply-templates/>
</body>
</html>
</xsl:template>

<xsl:template match="title">
<h1 align="center">
<xsl:apply-templates/>
</h1>
</xsl:template>

<xsl:template match="paragraph">
<p align="center">
<i>
<xsl:apply-templates/>
</i>
</p>
</xsl:template>

</xsl:stylesheet>

032cocoon.qxd 31.01.2001 11:10 Uhr Seite 35

MAIN FEATURE COCOON/XML

36 LINUX MAGAZINE 6 · 2001

.../conf/coocon.properties:

##
User Agents (Browsers)
##
browser.0 = explorer=MSIE
browser.1 = pocketexplorer=MSPIE
browser.2 = handweb=HandHTTP
browser.3 = avantgo=AvantGo
browser.4 = imode=DoCoMo
browser.5 = opera=Opera
browser.6 = lynx=Lynx
browser.7 = java=Java
browser.8 = wap=Nokia
browser.9 = wap=UP
browser.10 = wap=Wapalizer
browser.11 = mozilla5=Mozilla/5
browser.12 = mozilla5=Netscape6/
browser.13 = netscape=Mozilla

clean-page.xml

<?xml version="1.0"?>
<?cocoon-process type="xslt"?>
<?xml-stylesheet href="page-xsp.xsl" type="text/xsl"?>
<page>
<title>First XSP Page</title>
<p>Hi, I’m your first XSP page ever.</p>
<p>I’ve been requested <count/> times.</p>
</page>

page-xsp.xls

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsp="http://www.apache.org/1999/XSP/Core"

>
<xsl:template match="page">
<xsl:processing-instruction name="cocoon-process">type="xsp"</xsl:processing-instruction>
<xsl:processing-instruction name="cocoon-process">type="xslt"</xsl:processing-instruction>

<xsl:processing-instruction name="xml-stylesheet">href="page-html.xsl" type="text/xsU
l"</xsl:processing-instruction>
<xsp:page language="java" xmlns:xsp="http://www.apache.org/1999/XSP/Core">
<xsp:logic>

static private int counter = 0;
private synchronized int count() {

return counter++;
}

private String normalize(String string) {
if (string == null) return "";
else return string;

}
</xsp:logic>

<xsl:copy>
<xsl:apply-templates/>

</xsl:copy>
</xsp:page>
</xsl:template>
<xsl:template match="title">

<xsl:copy-of select="."/>
</xsl:template>

<xsl:template match="p">
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

<xsl:template match="count">
<xsp:expr>count()</xsp:expr>
</xsl:template>

</xsl:stylesheet>

032cocoon.qxd 31.01.2001 11:10 Uhr Seite 36

can concentrate your efforts on maintaining a single
content file while simultaneously generating HTML
pages for multiple browsers.

This allows you to support various vendor-
specific HTML, DHTML, or JavaScript versions, or
supply a WML page if the client happens to be a
WAP compatible mobile phone, and even a PDF
document, as we will see in the following section.

The default stylesheet in our example is
specified as follows:

<?xml-stylesheet href="hello-page-html.xsU
l" type="text/xsl"?>

in our sample document.
You could follow up this line with a sequence

like the following:

<?xml-stylesheet href="hello-page-ie-html.U
xsl" type="text/xsl" media="explorer"?>

to assign your own template for the Internet
Explorer, or use the following line:

<?xml-stylesheet href="hello-page-wml.xsl" tU
ype="text/xsl" media="wap"?>

to define a stylesheet for a WAP mobile phone.
You will find a range of values for the attribute

media in .../conf/cocoon.properties
The list is extensible, however, you must pay

attention to the order of the list entries, as the MS
Internet Explorer (for example) uses the following
banner

"Mozilla/4.0 (Compatible; MSIE 4.01; ...)" and
would be recognised as Mozilla, if you had omitted
an entry to check for the MSIE string.

The client media type is read from the HTTP
request header. You can therefore use a simple CGI
script that outputs environment variables to
discover the exact syntax (this is pre-configured for
SuSE 6.4).

Stylesheets are fairly powerful tools, when you
consider that they can be used not only for simple
formatting tasks but to embed logical constructs
that allow you to output entries complying to a
given search pattern. A brief explanation is all we
have space for:

A stylesheet comprises multiple templates that
begin with <xls:template match=”....”> and end
with </xls:template>. The value of the atttribute
match defines the tag in the attached XML
document that the template is applied to. Starting
at the root element (<page> in our case), the XLST
processor replaces the content of the XML
document with the HTML tag defined in the
appropriate template. If the processor finds an
occurrence of the <xsl:apply-templates/> tag, the
children of the root element are also parsed, and
then their children, and so on until all the XML tags
have been replaced. <xsl:value-of select=”title”/> is
used to output the value of the XML tag <title>. XSL
allows for a variety of more complex operations,
such as for loops and if constructs. You can define

the output order, or output only selected elements,
and perform many other useful tasks that are
unfortunately beyond the scope of this article.

However, I would like to make the following
observation on stylesheets before we move on:
Because XSL documents need to be well-formed,
just like XML documents, the HTML tags in the
stylesheet also have to be well-formed. In fact, you
will not actually be generating an HTML page, but
an XHTML page. Tags such as <hr> for a horizontal
line or
 for a carriage return must appear in
their syntactically correct form <hr /> or
 in
stylesheets. Our example contains an occurrence of
this, as you can see by referring to the paragraph
tag, <p>, whereas HTML will often omit the end
tag. You also need to pay special attention to
metacharacters such as the ampersand (&). This is
normally used to reference so-called entities, that is,
text constants that are repeatedly used. XML
contains pre-defined entities to resolve this
problem:

& for the ampersand, > and < for
greater than and lesser than, " for double
quotes and ' for single quotes.

In the case of longer text passages, whose
syntactical validity does not need to be checked, we
recommend that you place these lines between
<![CDATA[and]]> - CDATA is short for ‘character
data’.

The W3C web site contains the full
specifications of XML and a draft for XSL, although
these documents are by no means easy reading and
thus not recommended for beginners. If you are
looking for a tutorial that is also applicable to
Cocoon, take a look at ‘Java & XML’.

FOP

XML can (at least in theory) be converted to any
format and not only to text-oriented formats, such
as HTML or WML. The Formatting Objects
Processor (FOP) is required for this task. The
processor currently supports conversion to PDF
format. Just like in the previous example, you simply
need a different stylesheet to convert the content of
an XML document into a PDF document. However,
we will not be discussing the exact syntax of this
special stylesheet at this time. For further
information, please review the examples in the
Cocoon sample files or take a look at the W3C
Consortium web site, where you will find the
complete XSL-FO draft.

XSP

Now that we have seen how to define static pages -
with the exception of one or two logical constructs
that can be defined in XSL stylesheets - it might be a
good idea to find out how to generate dynamic
output. In the case of Cocoon the

XSP processor (eXtensible Server Pages) is

MAIN FEATURECOCOON/XML

6 · 2001 LINUX MAGAZINE 37

032cocoon.qxd 31.01.2001 11:11 Uhr Seite 37

responsible for this task. Code segments are stored
in so-called logic sheets, in contrast to Java Server
Pages where code is embedded in normal HTML
pages. This means creating at a third file type in
addition to XML and XSL documents, but it also
means genuine separation of content and business
logic. This in turn provides for ease of maintenance,
since the files can be managed independently.

To demonstrate this point I have abbreviated
one of the files in the Cocoon sample file
compendium. The listings clean-page.xml (content
file), page-xsp.xml (business logic) and page-
html.xsl (layout) are no more than a simple counter
that outputs the number of hits for a page, clean-
page.xml. Using a technique commonly seen with
servlets, the number of hits is stored in memory.

On initial access to clean-page.xml Cocoon
generates and compiles the Java source, which is
stored in the repository defined in the configuration
file in the same (relative) subdirectory as the
corresponding XML document. If you store the
XML/XSL documents in the directory,
/usr/local/httpd/htdocs/samples/xsp/
then the corresponding Java source or classes will
be stored in directory,
/usr/local/httpd/temp/_usr/_local/_htdocs/_samples/
_xsp/. At first sight this may seem somewhat
complicated, however, if you are working on a
large-scale project, you will begin to appreciate the
strict separation with its beneficial effects on
maintenance tasks. If you are only interested in
creating a quick and dirty prototype or
demonstrating navigational or layout features, you
may prefer to use CGI or PHP.

Summary

This article introduced you to Cocoons XSP
processor, however, Cocoon comes with a variety of
other processors, such as the SQL processor, or the
LDAP processor.

If you require more information on this topic,
please refer to the comprehensive documentation
included in the Cocoon package.

At time of writing Cocoon2 is under
development, although an official release is not yet
available. The web site does not provide any clues as
to when Cocoon2 might be released, however, I
would like to introduce you to some of Cocoon2s
features at this point:

Cocoon 1.x is based on DOM1, that is,
documents are placed in a hierarchical tree and
stored completely in memory after parsing. This can
be a problem, especially in the case of large-scale
documents. This problem has been resolved by
using SAX (Simple API for XML) in Coocon2. SAX
parses a document sequentially and triggers the
appropriate event when a tag is encountered. In
other words only partial or no storage of the
document in memory is sufficient.

DCPs (Dynamic Content Pages) have also been
dropped in favour of Extensible Server Pages.
Additionally, a lot of effort has been put into
optimising performance, and you have to admit
that Cocoon 1.x is not exactly quick if you need to
process a number of requests simultaneously.

At this point I would also like to draw your
attention to another interesting project that also
deals with XML content generation issues and
similarly envisages separating content, logic and
style: MxXML. This project was launched by and is
under the supervision of Clemens Kerer, Engin Kirda
and Roman Kurmanowytsch of the Institute for
Distributed Systems at the Vienna Technical
University.

A template engine is used to generate Java
classes or HTML files from XML/XSL files, allowing
them to be integrated in their own servlets. This
technique has one major advantage over Cocoon -
it allows you to implement business logic within
traditional servlets and does not require logic sheets
where Java and XML mingle in a single file. This also
allows you to continue using existing servlets, only
exchanging those parts where HTML code is output
for classes generated by MyXML. Classes and HTML
files are generated offline, that is, after modifying
an XML or XSL file, you must manually launch a Java
program that automatically creates the required
classes or HTML files. Of course you do not need to
re-compile the classes each time you modify the
XML content and you can also define dynamic
classes (for database applications, for example).

The comprehensive online documentation
contains further details. MyXML has already been
used to implement a major commercial Web site
and has stood up well to field testing so far. ■

Information

Brett McLaughlin: Java and
XML - Web Publishing

Frameworks
http://www.oreilly.com/catalo

g/javaxml/chapter/ch09.html
Cocoon:

http://xml.apache.org/cocoon/
W3C: XML-Specifikation

http://www.w3.org/TR/REC-
xml

W3C: XSL Working Draft
http://www.w3.org/Style/XSL/

MyXML:
http://www.infosys.tuwien.ac.

at/myxml/

■

MAIN FEATURE COCOON/XML

38 LINUX MAGAZINE 6 · 2001

page-html.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/TraU
nsform">
<xsl:template match="page">
<xsl:processing-instruction name="cocoon-format">type="text/html"</xsl:U
processing-instruction>

<html>
<head>
<title><xsl:value-of select="title"/></title>
</head>
<body>
<p>
</p>
<center>
<big><big><xsl:value-of select="title"/></big></big>
<xsl:apply-templates/>

</center>
</body>

</html>
</xsl:template>

<xsl:template match="title">
<!— ignore —>
</xsl:template>

<xsl:template match="p">
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

The Author
Markus Krumpck is a student

of Information Technology.
Web site programming is his

major field of activity. He
spends most of his free time

playing clarinet. You can
contact Markus at

markus.krumpoeck@gmx.at

032cocoon.qxd 31.01.2001 11:11 Uhr Seite 38

