
BEGINNERS PROGRAMMING CORNER

94 LINUX MAGAZINE 6 · 2001

This time we are going to start with variable fields,
the so-called arrays. It may sound very complicated
but in reality it’s very simple to use. A one
dimensional array is nothing but a series of variables
one after the other, as if one had a little box of
broad strips of squared paper – in each box one can
write a number. Since in these array-variables there

is no longer a single value, we have to say each time
which box we mean. To do this we attach to the
name of our fields in square brackets the number of
the box, which is to be used:

V[1]=Hello
V[2]=world!

After taking a look in the last

issue at metacharacters and the

basic use of variables, this time we

are thrusting forward into the

territory of multidimensional

variables and towards the end we

will be concerned with processing

character strings.

Part 2: Principles of Bash

ARRAY OF
LIGHT

MIRKO DÖLLE

094pcorner.qxd 31.01.2001 14:27 Uhr Seite 94

BEGINNERSPROGRAMMING CORNER

6 · 2001 LINUX MAGAZINE 95

In the first line we write in box number 1 Hello and
in box number 2 world!. As so often in the
computer world, Bash also starts to count at zero.
So before ”Hello” we still have one box free:

V[0]="We say:"

For the element zero incidentally the explicit
designation over ”[0]” can be left out, both in
assignments and in the output, as the following
output shows:

echo $V ${V[1]} ${V[2]}
We say: Hello world!

And this is the snag with arrays: to reach an
element, i.e. the content of a box, we have to use
square brackets – otherwise Bash would think
”$V[1]” was ”$V” – thus ”$V[0]” – and then ”[1]”
instead of the number of element number one in
our array.

So let’s just take a look at what is actually in our
array. To do this we need the command typeset,
with which among other things one can query the
status and content of a variable:

typeset -p V
declare -a V=’([0]="We say:" [1]="Hello" U
[2]="world!")’

The output from typeset corresponds to what one
would have to enter to roll in the array new from
the ground up. The new part is the command
declare -a, with which one can log variables. ”-a”
explicitly defines that V is an array, following which
the values of the elements 0, 1 and 2 are entered.
declare has other parameters apart from ”-a”,
which we will look at as necessary. As so often
happens, we can also do without the declare in this
case, by simply writing:

V=([0]="We say:" [1]="Hello" [2]="world!")

At this point, just a word about programming in
general. A programming language serves to give
the computer instructions in forms which are legible
and comprehensible for humans. One could also
feed the computer direct with processor
commands, but then one would have serious
problems correcting errors later or installing new
functions – after a certain time, one would no
longer understand one’s own program. The last
stop on this line is often the waste paper basket,
together with a complete redesign of the program.

This is why it is very worthwhile to use declare
to declare more complex structures, arrays for
example. An outsider is then much more likely to
understand the program. But that’s not enough.

You really must get used to documenting
your programs, regardless of whether you are
compiling them for C or Bash. The middle way
between the Spartan copyright annotation and a
comment on every line is, as usual, the best. An
output line, in which you concisely report an
error, is something you don’t need to document.

You may assume that a reader has complete
mastery of Bash. But if you start to process data
with external programs and at the same time
install interlocks or even tricks for faster
servicing, this point obviously really must be
documented with more than one line. I will,
when we come in the next instalment to
corresponding examples, go into this again.

But back to the arrays. Let’s just assume we had
gaps in our field, as in the following example:

N="The"
N[3]="house"
N[6]="."

On our strip of squared paper we would occupy
boxes 0, 3 and 6. Bash manages its memory better,
though, and there are no gaps there:

typeset -p N
declare -a N=’([0]="The" [3]="house" [6]=".")’

Our three entries are simply stored one after the
other, plus Bash remembers their element number.
In this way we can at any time fill in the as yet
unused numbers in the gap:

N[1]="is"
N[2]="the one"
N[4]="owned by"
N[5]="Nikolaus"
typeset -p N declare -a N=’([0]="That" U
[1]="is" [2]="the" [3]="house" [4]="owned by" U
[5]="Nikolaus" [6]=".")’

Finally it should be mentioned that array-
elements can be used at any point where a
normal (scalar) variable could be placed, but in
most cases one simply has to use the notation
with the curly brackets.

Special variables

Bash has access to a whole range of special
variables, such as for example the parameters for
a program start. Here are just the most
important ones.

The variables $0, $1, $2 etc. are the parameters
which were provided by the user when invoking a
Bash script (or a function, but more on that later).
You can work with these in exactly the same way as
with all other variables, except that you cannot
assign values to them. This is because variable
names cannot start with a figure. The variable $0 is
always set. This is where the program name, as used
to call it up, is found. The total number of
parameters can be polled with $#. Take note that
$0 is not included in this count, if $# thus supplies
”4”, this means that there is $1 to $4 plus $0 in
addition.

Let’s just take a look at the example ”myecho”
in the following listing:

#!/bin/bash
echo [$#]: $1 $2 $3 $4 $5 $6 $7 $8 $9 ${10} U
${11} ${12}

094pcorner.qxd 31.01.2001 14:27 Uhr Seite 95

BEGINNERS PROGRAMMING CORNER

96 LINUX MAGAZINE 6 · 2001

The curly brackets from parameter ten on are
necessary, by the way, as otherwise Bash, as will
be familiar from arrays, will first insert $1 and
then add on a zero, etc. Simply write the little
program in a text editor, for example kedit,
mcedit or even emacs, and save it under the
name myecho. Then you have to make the file
executable with the command chmod a+x
myecho, and call it up twice:

./myecho 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[15]: 1 2 3 4 5 6 7 8 9 10 11 12
./myecho "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15"
[1]: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The different result from the two calls is due to the
quote marks. While on the first occasion we have,
according to $#, 15 parameters, with the second
call there is only one involved. Bash interprets
spaces as separators between two parameters in
program calls; consequently the 15 numbers
separated by blanks are 15 parameters. As already
outlined in the first part, we must either quote
parameters containing blanks in full or leave out the
blanks. In the second call Bash thus now has only
one parameter, consisting of all 15 numbers
separated by blanks, while $2 to ${12} from our
program remain unused.

To be able to output any desired number of
parameters, we would have to go through and
individually output all parameter-variables from $1
to the end, for example in a loop. The two special
variables $* and $@ save us this task, here for
example is our altered myecho:

#!/bin/bash
echo [$#]: $*

The difference between $* and $@ only
becomes clear when both are placed in quotes.
Then when there are four parameters ”$*” turns
into ”$1 $2 $3 $4”, while ”$@” turns into ”$1”
”$2” ”$3” ”$4”. At first glance the difference
does not appear to be of any significance. But
that’s due to the internal Bash variable IFS being
pre-set. The first character of this variable is used
with ”$*” to subdivide the individual
parameters. Normally IFS contains three
characters, namely the Blank space, the
Tabulator and Enter. The following example
shows the difference, by placing a comma before
the standard character in IFS:

#!/bin/bash
IFS=",$IFS"
echo [$#]: "$*"
echo [$#]: "$@"

The third line lists for us all numbers separated by a
comma, while the fourth is still separated by blanks.

On the other hand $@ is not superfluous, either,
and for this example we shall take a new program
with the name whichfiles:

#!/bin/bash
ls -l "$@"
echo —-
ls -l "$*"
echo —-
ls -l $@
echo —-
ls -l $*

Please remember to also make the program
executable with chmod a+x whichfiles. All we need
now is two files, one of them with spaces in the
name. Next we call up whichfiles and specify – careful
with the blank spaces – both files as parameter:

echo "Hello world" > "hello world.txt"
echo "That is Nikolaus’s house" > nikolaus.txt
./whichfiles "hello world.txt" nikolaus.txt

The result requires a bit more explanation. In this
case we have placed all four notations of $* and
$@ one after the other, the echo instructions are
only used as separators to give a better overview.
The first ls call correctly showed us both files,
hello world.txt and nikolaus.txt. As expected
$@ turned into hello world.txt and
nikolaus.txt, ls thus received two parameters
and displayed both files. The second ls rightly
complained at being unable to find any hello
world.txt nikolaus.txt. The reason is the property
of $*, of supplying all parameters separated
by a character in quotes. Accordingly ls also
received only one parameter, i.e. hello world.txt
nikolaus.txt. Calls three and four provide the same
result; here both parameters are given to ls
separated by a space. Because of the second
space in hello world.txt there were three
parameters for ls, hello and world.txt thus
correctly gave rise to a complaint, as neither of
these files exist.

Finally the variables $? and $! should be
mentioned, which serve to query program response

Special variables in Bash
$* All parameters assigned to the program, separated by blanks. $*=$1 $2 $3 $4 ...
"$*" All parameters assigned to the program, in quotes, separated by the 1st character (c) of the variable IFS. ”$*”=”$1c$2c$3c$4” ...
$@ All parameters assigned to the program, separated by blanks. $@=$1 $2 $3 $4 ...
"$@" All parameters assigned to the program, individually enclosed in quotes and separated by blanks. ”$@”=”$1” ”$2” ”$3” ”$4” ...
$# Number of assigned parameters
$? Response value of the last command
$$ Process-ID (PID) of the current program
$! Process-ID (PID) of the last program started in the background
$_ Last parameter of the last program called up

094pcorner.qxd 31.01.2001 14:28 Uhr Seite 96

BEGINNERSPROGRAMMING CORNER

6 · 2001 LINUX MAGAZINE 97

values, the so-called exit status. At present they are
not yet important to us, but a short description can
be found in the table "Special variables for Bash".

String processing

Most script languages, as well as Bash, are
principally concerned with processing character
strings, also referred to simply as strings. This
includes a series of letters, numbers, special and
control characters, for example the chapter of a
book. It would be wrong only to take into account
letters, numbers and any special symbols in
character strings, because a string can frequently be
several lines in length and contain other formatting
symbols such as tabulators or a page break.
This clarification is important – we must always be
aware that in such a string variable there could
always be a whole novel or just one file.

The assignment and output of a character string
has been shown by many examples. Next we come
to the possibilities for finding out something about
the text hidden in variables and manipulating it.
Contrary to Version 1.1 of Bash, we now have
access to a vast range of functions, but let’s start
with something very trite.

How do you find out that a variable is empty?
Well, one possibility would be to compare the
content with an empty string (which means we are
concerned with the control structures), or else
simply determine the length of the string:

a=""
echo ${#a}
0
a="four"
echo ${#a}
4

The quotes in the assignment can be left out, even
if it would look somewhat unusual in the first line.

We can even – without first having introduced
control structures – react to an unspecified
parameter with an error message:

#!/bin/bash
a="Hello"
: ${a:?’yes’}
echo ‘no’

Save this little program under is-a-empty and call it
up after you have made it executable with chmod.
The program answers correctly with no, which is
hardly surprising, since after all, we did output it
with echo. Now delete Hello from the second line,
so that a is now empty, and call up the program
once more:

a: yes

It is obvious that our echo no from the last line
of the program has not been executed this time.
That’s the result from the third line. We know of

the colon-command from the last instalment of
Programming corner: it does nothing at all. The
parameters after colon, however, are still taken
into account and this is where the evaluation is
hidden. The instruction
${variable:?errormessage} first checks whether
variable is empty or does not even exist. If so, the
error message after the question mark is issued
and the program is interrupted. That was why
the echo from the fourth line did not even get a
look in. When the error message is output,
Bash has, in the usual way, placed the program
name and the location at which the error arose,
in front.

For the next two instructions we shall modify
our script whichfiles first:

#!/bin/bash
ls -1 ${1:-$HOME}

What happens now is that we get a list of either the
specified directory, or else the content of our home
directory $HOME:

./whichfiles /bin
arch
bash
cat
...
./whichfiles
dead.letter
mail ...

The instruction ${variable:-string} has the effect of
inserting string where there are empty or non-
existent variables. In our case the content of the
variable $HOME, otherwise the content of
$variable. We shall check the first parameter in the
program. If we have specified a directory, $1 is filled
and the instruction delivers the content. If not,
$HOME is inserted.

Almost the same effect is produced by
${variable:=string}, but here string is additionally
assigned to the variable, if it is empty or does not
exist:

#!/bin/bash
directory="$1"
: ${directory:=$HOME}
echo "show $directory"
ls -1 "$directory"

${variable:+string} has a similar effect to the
previous instructions. The difference consists in that
string is always inserted when variable contains
something. If it is empty, nothing is inserted. This
instruction is very seldom used in practice, which is
why I have also been unable to find a useful
example of it.

In the next instalment of Programming corner
we shall be taking a look at the initiation of part-
strings and Search/Replace with regular expressions
in Bash. For now all that is left is for me to wish you
a good start to the new millennium which now lies
before us. ■

Terms

Character string, string: A
series of letters, numbers,
special and control characters.
Character strings can certainly
contain several lines, and the
content can also consist of a
program or image file.
Field, array: Consists of
several Elements, which are
addressed via numbers. In one-
dimensional arrays, too, only
one number is necessary for
the selection of an element,
for two-dimensional arrays
two, etc.
Element of an array: This is
addressed via its position.
Elements can be used like
regular variables; values can
be stored and called up.
Response value, exit status:
Value sent back to the
enquirer when a program
ends. The response is
guaranteed by the system. Not
to be confused with messages
on the screen. If the program
has been successfully
executed, the value 0 is usually
returned, if errors or problems
arose, the value is greater than
0. One can often determine
the error on the basis of the
response values; explanations
on their meaning can usually
be found in the program
documentation.

■

094pcorner.qxd 31.01.2001 14:28 Uhr Seite 97

