
One of the greatest strengths of Perl is the CPAN,
the Comprehensive Perl Archive Network. This
world-wide network was established to give Perl
programmers access to the truly vast number of
modules for their language. As well as small libraries
and useful trivia there are also wrappers around
fully developed tools for programming graphical
user interfaces. Of course Gtk+ and GNOME have
to be in on the act, and hence there is Gtk-Perl by

Kenneth Albanowski. You can get your hands on
the necessary module with the simple installation
procedure, to which one has become accustomed
by Perl via the CPAN, as follows:

perl -MCPAN -e shell
cpan shell – CPAN exploration and modules U
installation (v1.59)
ReadLine support enabled
cpan> install Gtk-Perl

PROGRAMMING GNOME

72 LINUX MAGAZINE 6 · 2001

Everyone knows by now

that script languages are full

programming languages. But only a few

people build complete applications with graphical

user interfaces out of them. Equally few people

therefore are aware that this can be done

much faster than with established languages.

GNOME and Perl

PEARLS
BEFORE
DWARVES

THORSTEN FISCHER

072gnomeprog.qxd 31.01.2001 12:18 Uhr Seite 72

Gtk-Perl is presently available in version 0.7004 and
contains support for GNOME. The version of CPAN
is, in the circumstances, not the latest; which is why
it is worth taking a look at the Gtk-Perl Homepage
and seeing if there is anything new.

First steps

Normally, I prefer Python, for running up little
Gtk+- or GNOME programs, as Perl is set aside
on my system for administrative tasks, and
therefore it seems a good idea to start with a
little Hello frog program to get used to the
language. Listing 1 shows an example for such a
program. The associated screenshot can be seen
in Figure 1.

Listing 1: hellofrog.pl
1: #!/usr/bin/perl -w
2:
3: use strict;
4: use Gnome;
5:
6: my $APPNAME = ‘Hello froggy!’;
7:
8: init Gnome $APPNAME;
9:
10: my $app = new Gnome::App $APPNAME, $APPNU
AME;
11:
12: my $button = new Gtk::Button "Hello frogU
gy!";
13: $app -> set_contents ($button);
14:
15: show_all $app;
16:
17: main Gtk;

So far, no surprises for either Perl or GNOME
programmers. The module is integrated in line 4
and the application is then initialised in line 8.
The application is an in-house widget in GNOME
which on the other hand takes on diverse
additional tasks. So for example it is easy for
several instances to create one and the same
application. This is reflected in line 10 in the
creation of this widget. In the same way, a
button is created and inserted into the window
and then displays the entire application. In line
17 the program loop gtk_main gets control. Up
to now this looks fairly similar to a Hello World
in C, with the difference that Perl again exercises
its magic, to demand considerably fewer
keystrokes from the programmer. Incidentally, if
a more alert reader who has already browsed
through the material wonders why the name of
the program does not appear in the title line of
the screenshot, although it ought to be placed
there by line 10: this is due to my misconceived
Sawfish theme.

Signals and events

Gtk+ is an event-based widget set, and events
certainly get the worst of it here. If an event occurs,
a corresponding signal is emitted, to which a
function defined by the programmer can react.
Such a function is known as a callback. If the
program in Listing 1 is to be ended, for example the
insertion of the following code between lines 12
and 13 is standard:

If the button as so the control, sends out the
signal ‘clicked’, the said anonymours function
should be executed, which then leads to the
ending of the program. Take note that the following
cannot function:

signal_connect $button ‘clicked’, Gtk -> maiU
n_quit;

It’s good form to write individual callbacks
for each signal, especially for those
which end the program, since this leaves
options for clearing up – for example one can
construct a routine end and reference it as follows:

sub end {
print "Bye-bye froggy!\n";
Gtk -> main_quit;
return 0;

}
...
signal_connect $button ‘clicked’, \

Getting dolled up

In a GNOME application, three things form part of
the standard equipment: a status bar at the bottom
end of the program, a menu at the top edge and
under this a toolbar, providing access to the most
frequently used functions. With Perl these things can
be added quickly and easily, as can be seen from
Listing 2, which took only a short time to develop;
admittedly, with a little cut & paste, but that’s what
GPL code is there for, after all.
This code is already a great deal larger, but it also
achieves a great deal more. Firstly of course the
initialisation, and this time I am also giving it a version
number. In lines 10, 16 and 23 the callbacks are
defined, and I will go into this more later. In line 33
and the following lines the toolbar is placed. A list of
lists has to be given to the function; but since there is
no such thing as two-dimensional arrays in Perl, one
has to make do with the corresponding notation. The
reader who is so inclined should again watch for the
invocation in line 47, in which the callback is defined
in case the respective button on the toolbar is
pressed. In the example I have used only so-called
‘Stock Pixmaps’, which are pre-installed in GNOME.
The menus are created from the same pattern. Line

PROGRAMMINGGNOME

6 · 2001 LINUX MAGAZINE 73

Figure 1: Hello froggy!
Hello Hello froggy!

signal_connect $button ‘clicked’, sub { Gtk -> main_quit;
print "Bye-bye froggy!\n";
return 0; };

072gnomeprog.qxd 31.01.2001 12:18 Uhr Seite 73

80 refers to the first interesting callback: The About-
box, which can also be seen in Figure 3. The callback
invocation brings the information dialog onto the

screen – well, it’s not really a dialog, just an OK
button, but anyway. Line 86 shows an element which
ought to be included in every GNOME application: a

PROGRAMMING GNOME

74 LINUX MAGAZINE 6 · 2001

1: #!/usr/bin/perl -w
2:
3: use strict;
4: use Gnome;
5:
6: my $APPNAME = ‘Book manager’;
7: my $APPVERSION = ‘0.1.0’;

8: init Gnome $APPNAME;
9:
10: sub end {
11: Gtk -> main_quit;
12: parint "Bye bye.!\n";
13: return 0;
14: }
15:
16: sub infobox {
17: my $about = new Gnome::About $APPNAME, U
$APPVERSION,
18: ‘(c) 2000 Thorsten Fischer’, [‘ThorsU
ten Fischer@mapmedia.de>’],
19: ‘Gtk-Perl sample code for Linux MagazU
ine.’;
20: show $about;
21: }
22:
23: sub select {
24: my ($clist, $row, $column, $event, @datU
a) = @_;
25: my $text = $clist -> get_text ($row, $cU
olumn);
26: print "The selection was made in line $U
row, column $column.\n";
27: print "Content: $text\n";
28: }
29:
30: my $app = new Gnome::App $APPNAME, $APPU
NAME;
31: signal_connect $app ‘delete_event’, \
32:
33: $app -> create_toolbar (
34: {
35: type => ‘item’,
36: label => ‘Open’,
37: pixmap_type => ‘stock’,
38: pixmap_info => ‘Open’,
39: hint => ‘Open book list’,
40: },
41: {
42: type => ‘item’,
43: label => ‘Exit’,
44: pixmap_type => ‘stock’,
45: pixmap_info => ‘Quit’,
46: hint => "Quit $APPNAME",
47: callback => \
48: }
49:);
50:
51: $app->create_menus (
52: {
53: type => ‘subtree’,
54: label => ‘_File’,
55: subtree => [
56: {
57: type => ‘item’,
58: label => ‘_New’,
59: pixmap_type => ‘stock’,

60: pixmap_info => ‘Menu_New’
61: },
62: {
63: type => ‘item’,
64: label => ‘_Quit’,
65: pixmap_type => ‘stock’,
66: pixmap_info => ‘Menu_Quit’,
67: callback => \
68: }
69:]
70: },
71: {
72: type => ‘subtree’,
73: label => ‘_Help’,
74: subtree => [
75: {
76: type => ‘item’,
77: label => ‘_About...’,
78: pixmap_type => ‘stock’,
79: pixmap_info => ‘Menu_About’,
80: callback => \
81: }
82:]
83: }
84:);
85:
96:
87: $appbar -> set_status (‘Welcome!’);
88: $app -> set_statusbar ($appbar);
89:
90: my $sw = new Gtk::ScrolledWindow undef, uU
ndef;
91: $sw -> set_policy (‘automatic’, ‘always’);
92:
93: my @list title = (‘Author’, ‘Title’, ‘ISU
BN’);
94: my $liste = new_with_titles Gtk::CList (@U
list title);
95: $liste -> signal_connect (‘select_row’, U
\);
96:
97: my @book1 = (‘Larry Wall, et al’, ‘progrU
amming Perl’, 1565921496);
98: my @book2 = (‘Helmut Herold’, ‘Linux Unix U
System programming’, 3827315123);
99: my @book3 = (‘Wiglaf Droste, Gerhard HensU
chel’, ‘The Mullah from Bullerbü’, z38940135U
24);
100: $liste -> append (@book1);
101: $liste -> append (@book2);
102: $liste -> append (@book3);
103:
104: for (my $i = 0; $i < $liste -> n_columns; U
$i++) {
105: $list -> set_column_width ($i, $list -> U
optimal_column_width ($i) + 5);
106: }
107:
108: $sw -> add ($list);
109:
110: $app -> set_contents ($sw);
111: $app -> set_default_size (640, 480);
112: show_all $app;
113:
114: main Gtk;

Listing 2: bookman.pl

072gnomeprog.qxd 31.01.2001 12:18 Uhr Seite 74

status bar, which consists under GNOME of an actual
status bar for messages and a progress bar which can
display the progress of actions. Since in the example,
both are meant to be present, the necessary flags are
set to 1 instead of 0. The second parameter is the
‘Level’, at which the interaction takes place. In this
case it is at a user-defined setting. These settings can
be adjusted in the GNOME control centre.

Callbacks make you feel at home in C

A GtkScrolledWindow is now stuffed into the
application, into which a GtkCList with illustrious
contents migrates: From line 97 the list is filled with
data, in this case with a few very nice books. Messrs.
Droste and Henschel will surely be pleased at being
included with Wall and Herold in a ‘List of nice
books’. In line 104 a small loop runs, which
calculates the best size for displaying the field
contents. After this the whole mess is actually
displayed and the program started. The callback in
line 23 for selection in the list writes the data
transferred in its own local variables. The structure of
the callbacks for individual signals follows those in C,
so that in Perl, too, one is forced to know these
precisely, so as to be able to distribute the values
correctly. The relevant literature does however
provide references. Figure 2 now shows the
completed program. ‘Book manager’ is perhaps a bit
too high-faluting for a simple GtkCList, which more
or less randomly contains a list of books, but it is only
meant to be an example.

Data on the list

It is unlikely that one would want to prepare his
data so that it fits into the list, only then to have to
again tediously cobble it together for the rituals of a
selection. For example: If I have an object in Perl
having the properties of a book, then I would like to
see this object associated with the entry in the line,
without having to expend any effort on having to
reconstruct the object purely from the entries. In
order to realise this, lines with data can be
connected. This is done as follows:

$list -> set_row_data (0, $object);

Here the first line assigns the object $object. This
assignment is retained, even if the position of the
line changes as the result of a sorting. Through a
variant of this function, if the line has been
destroyed – perhaps it has just been deleted – a
callback function can be invoked which is given the
data, and thus can then proceed as required:

$list -> set_row_data_full (0, $object, U
&function);

Conclusion

The nice thing about a GNOME program in Perl is that
unlike C, no complete code tree has to be delivered.
Basically a single file is sufficient, which contains the
script or the program respectively. The code trees, as
used for C programs, mainly serve to configure the
source code appropriately for the respective platform.
For the code presented here this has already been
done, when Perl and Gtk-Perl were installed, so this
step is dropped and the data volumes remain more
manageable. Also the syntax leans heavily on the
normal Gtk+ and GNOME under C, so the methods on
objects all have matching designations. Support for Perl
by Gtk-Perl is not however restricted to simple GUI
functions, but also extends to image processing by Imlib
and GdkPixBuf, to the processing of Glade data and
also to more exotic widgets like GtkHTML and
GtkGLArea. Coding examples are on the Web – for real
this time. Happy Gnoming! ■

PROGRAMMINGGNOME

6 · 2001 LINUX MAGAZINE 75

Figure 2:
Book manager

Figure 3:
Information about
the book manager.

Info

Gnome Website:
http://www.gnome.org/
CPAN: http://www.cpan.org/
Gtk-Perl Homepage:
http://projects.prosa.it/gtkperl/
Thorsten Fischer: GUI-
programierung mit Gtk+, SuSE-
Press 2000
Code examples from the article:
http://www.derfrosch.de/weic
hewaren/linux-magazin.html

■

The author
Thorsten Fischer is a student of
computer science and Media
consultancy at the Technical
University of Berlin, his book
”GUI-programierung mit
GTK+” was published in
October just in time for the
book fair by SuSE-Press. He
also works as a developer for
Mapmedia in Berlin.

072gnomeprog.qxd 31.01.2001 12:18 Uhr Seite 75

