®€066Scheme.gxd 31.01.2001 11:50 Uhr Seite 66

——

]" PROGRAMMING

_|(PROGRAMMING WITH LISP

In this series of articles

we would like to
introduce Lisp, one of
the oldest language
families, but one that is
by no means ready for
the scrap heap.

INTRODUCIN

SCHEME,
SIMPLEST LIS
LANGUAGE

Lisp- ‘sounds familiar? If
your preferred text editor
is Emacs, you will have
come across at least one
example of Lisp. Should
you have had a more
detailed look at Emacs
Lisp you may have got the impression that this is a
very substantial language. But don't be fooled, this
substance is not intrinsic to the language itself, but
results from a feature that is characteristic to all Lisp
dialects. As Paul Graham puts it: "Lisp is a
programmable programming language.” The
language core of all Lisp languages is relatively
small, and that of Scheme is certainly the smallest.
The Scheme standard (IEEE Standard, 1178-1990 R
1995) is probably the shortest for any language.
Interestingly, that of another Lisp variant, Common
Lisp, may well be one of the longest. It is therefore
safe to say that the Lisp family offers something for
everyone, a statement with which you will hopefully
agree after reading this series of articles. As an
introduction to Lisp programming | would like to
start with its smallest exponent, Scheme.

Some Scheme history

There is an article on the Internet which illuminates
the history of the Lisp family. The text comprises
more than seventy pages, which is beyond the
scope of an article like this. Here therefore a
summary of the information about Scheme which
can be found there.

Scheme was developed by Gerald Jay Sussman
and Guy L. Steele in the mid-seventies as an
implementation aimed at helping them to
understand a theory by Carl Hewitt. Sussman and
Steele are defining personalities in the development

66 LINUX MAGAZINE 6 -2001

4

FRIEDRICH DOMINICUS

of the Lisp languages. Sussman is the co-author of
one of the most highly acclaimed books on
programming called Structure and Interpretation of
Computer Programs, in which Scheme is used to
illustrate different aspects. Reading this book is
highly recommended. Steele is the author of the
standard work on Common Lisp called Common
Lisp, The Language.

This book was one of the starting points for the
standardisation of Common Lisp and can therefore
be found on the shelves of any Lisp programmer. It
is not a textbook, but a reference manual and more
than 1000 pages long. Its index alone is longer than
the complete standard for Scheme.

Scheme was initially developed as a playground
for programming experiments. Extensive
experimentation lead to a number of different
implementations of Scheme being developed,
including some commercial versions. To get an
overview, start here:
ftp://ftp.cs.indiana.edu/pub/scheme-
repository/doc/misc/scheme_2.faq.

The origin of the name Scheme has its own
anecdote. Sussman and Steele were very pleased
with this toy actor implementation and named it
Schemer in the expectation that it might be
developed into another Al language in the tradition
of Planner and Conniver. However, the ITS
operating system had a 6-character limitation on file
names and so the name was truncated to simply
Scheme and that name stuck.

Why Scheme?

Scheme, like Common Lisp, offers the opportunity
of testing any programming paradigms. Scheme
allows imperative, functional (one of its strengths)
or, with extensions, object-oriented work. Many

®€066Scheme . gxd

31.01.2001 11:50 Uhr

Scheme systems contain an OO system, as does
Common Lisp, which features one of the most
flexible (CLOS). Scheme does not force its own
scheme of things on you, which should please Linux
fans especially.

Different Schemes

As previously stated, there are a number of
implementations. The following is a short list of
notable free Scheme implementations — obviously
without any claim to completeness:

e MIT Scheme. Probably the most mature Scheme
going (the current version is 7.5, and unlike
Windows software they have been counting
steadily upwards from one). Forms the basis of
teaching at MIT, together with the book by
Sussman mentioned above. Very substantial
(probably the Scheme equivalent of Common
Lisp) with interesting extensions and applications
(object systems, graphics, an Emacs clone (Edwin)
that uses Scheme as its extension language, etc.)

e Guile. The standard script language of the FSF.

Scheme is used here especially as an extension

language. There are even discussions underway

to replace Emacs Lisp with Guile. The window
manager SCWM uses Guile as its extension

language. Guile is also very suitable for use as a

Unix scripting language. As is often the case with

FSF favourites, you either like Guile or avoid it

Elk. An implementation developed especially for

embedding in C or C++. The idea is certainly

attractive: instead of creating a special language
for each tool you use the full functionality offered
by Scheme

e Scsh. My personal favourite when it comes to
shell programming. In many cases where | once
used shell scripts or Python scripts | now use Scsh.
It is remarkable how cleanly the, sometimes
unconventional, shell syntax has been converted
to Scheme

e Kawa. A Scheme interpreter written in Java,
which also translates into Java byte-code

e DrScheme or MzScheme. Almost as substantial as
MIT Scheme and designed especially for teaching.
DrScheme is a comprehensive Scheme
development environment with very helpful
extensions and the best documentation. | will
therefore mainly be using DrScheme

Installation of DrScheme

¢ 1. Download the software from
http.://www.cs.rice.edu/CS/PLT/

e 2.cd /usr/localllib

e 3. tar-xvzf plt.i386-linux.tar.gz

e 4. cdplt

e 5. Execute .finstall.

e 6. Set an environment variable $PT_HOME and
add $PT_HOME/bin to your path.

You can add the following to your .bashrc or .zshrc:

Seite 67

——

PROGRAMMING WITH LISP -1

PROGRAMMING\l

for DrScheme

PT HOME=/usr/local/lib/plt

export PATH=$PATH:S$PT HOME/bin
export MANPATH=$MANPATH:$PT HOME/man

You should now be able to start DrScheme by
typing drscheme. | would also recommend the
installation of MrSpidey, a static debugger.
However, this does not have to be done
immediately, as DrScheme offers a more agreeable
way of installing additional packages. When the
Help Desk is open (menu Help->Help Desk) and you
encounter a link which informs you that the
required package has not yet been installed, you are
given the chance to connect to the DrScheme Web
site to install the desired software.

It is, of course, advisable not to install the
software as root, and it is certainly also a good
idea to put the packages onto your hard disk first
before blindly accepting anything going.
However, | have made things easy for myself by
installing the entire software under an
unprivileged account. Therefore | regarded the
risk of possible data loss as not very high.

When you call DrScheme using drscheme, you
will see the following opening screen: B:Figure 1:
DrScheme Start Window The upper part of the
window is an editor, where you can enter Scheme
programs. These definitions can be saved if
required. DrScheme uses the extension .ss, but .scm

File Edit windows Show Language Schemes Halp l

.mn-r.-z-j 0O, Check Dynm] ﬂmpi I.Em-:uu] .hlki

H
3 MD nat renning

62001 LINUXMAGAZINE 67

®€066Scheme.gxd 31.01.2001

PROGRAMMING

11:51 Uhr

Seite 68

——

PROGRAMMING WITH LISP

is also common. When you click on execute the
program text is transferred, and you can call the
procedure you have defined above from the prompt
in the lower part of the window. You could of
course just go straight into the lower part and get
started. On pressing return your entry is evaluated
and a result is returned. You will probably be
familiar with this process from your favourite
scripting language.

Should the buttons Analyze and Step not be
available to you then the corresponding packages
have not been installed and you can upgrade via the
Help Desk. Also helpful is Check Syntax, which lets
you perform syntax checking. DrScheme offers several
language levels; in figure 1 the most advanced level
has been set. At this level you are able to use the
graphics toolbox. A graphical user interface created in
this way can be used anywhere there is an
implementation of DrScheme. It is therefore possible
to develop on Linux and, should someone insist, to
run the programs written there on FreeBSD, Solaris,
Macintosh and, last but least, Windows. As you can
see, it is a real cross-platform development tool.

First steps

Try some entries in the lower part of the window.
Please note that all Lisp languages use prefix
notation. The sequence is always (procedure name
parameter1 parameter2) Just give it a go:

> 1

1

> (+12)

3

> "Hello"

"Hello"

> (/13)

1/3

> (* (expt 2 32) 2)
8589934592

> a

reference to undefined identifier: a
> 'a

a

You can already notice some interesting features of
Lisp languages. Numbers can be of any length and
among the numeric data types offered by Scheme
are fractions. The arithmetic should not surprise
you, but possibly the reaction to the entry of ‘a
might. The behaviour when entering a is likely to be
familiar to you, a is seen as a variable, if nothing has
been assigned to it you get an error message about
undefined identifiers. The behaviour of ‘a may
surprise you. The ‘ represents (quote, that means
the following variable is seen as a symbol. In this
case the symbol is called a, i.e. if symbols are quoted
they evaluate to themselves. Other elements that
evaluate to themselves are numbers, characters and
character strings.

How do you assign something to a variable in
Scheme? By using define. Note that parentheses
must be opened before using define, hence:

68 LINUX MAGAZINE 6 -2001

4

> (define a 1)

What happens to a is not shown, so we'll ask:

> a
1

Scheme is a dynamically typed language, therefore
variables do not have to have their type explicitly
declared. If you now enter:

> (define a "Hello")
> a

"Hello"

>

a becomes a string. The value of a variable can be
determined using something called predicates. The
names of the predicates are pretty obvious: string?
for a string, number? for a number. The question
mark is optional, but the convention is to append it:

> (string? a)
true

> (number? a)
false

> (define a 1)
> (string? a)
false

> (number? a)
true

>

Data types

What data types does Scheme provide? They are
quickly listed: numbers (including ones of arbitrary
size, fractions and floating point numbers),
characters, strings, lists, fields, symbols, procedures
and macros. You may ask yourself, is that all?
Basically yes. DrScheme contains a construct for
defining structures, but this is already an extension
which is not included in the standard.

Talking of standards, the current standard is
called R5RS and can be found easily using the Help
Desk. Call the Help Desk, click on Manuals and
select Revised(5) Report on the Algorithmic
Language Scheme, then you can immerse yourself
in the standard. Or better still: follow the link
http://www.schemers.org to documentation about
Scheme, print the report and treat yourself to a
pleasant evening’s reading.

First procedures

After this long introduction we should look at how
procedures are defined and called. For this we will
be using one of Scheme’s central data structures,
the list, and calculating the sum of all elements of a
list. Our first attempt looks like this:

(define (my-sum-1 a-list)

(cond

((null? a-list) 0)

(else (+ (car a-list) (my-sum-1 (cdr a-list))2

))))

®€066Scheme . gxd

31.01.2001 11:51 Uhr

define (my-sum-1 a-list) defines my-sum-1 as the
procedure name, with a parameter being expected.
The name a-/ist implies that we are dealing with a
list. This is how procedures are defined in Scheme,
they are called in a similar manner, by enclosing the
procedure and its parameters in parentheses. Let’s
have a look at the implementation: there we find
(cond, this is the Scheme name for a multiple
conditional or case differentiation. The case
differentiation starts with a termination condition,
the only one in this example, ((null a-list?. null?
checks whether the list is empty. If yes, then 0 is
returned, otherwise the following is executed: (+
(car a-list) (my-sum-1 (cdr a-list))).

A procedure call is always enclosed in
parentheses, which means the following are
procedure calls: +, car, my-sum-1 and cdr. You can
assign (almost) any name to a procedure in Scheme.
There are certain conventions for different types of
procedures, such as the question mark in
predicates. What is being added? Something called
(car a-list) and also something else. The
significaance of (car a-list) an (cdr (pronounced
could-er) originates in the history of Lisp and is a
relic from its beginnings: car stands for contents of
the address part of the register and cdr for contents
of the decrement part of the register. To translate:
car denotes the first element of a list, and cdr all
elements of a list apart from the first one, that is to
say, the rest of the list. Since these names are
anything but mnemonic for anyone who is not a
Lisp expert, we will instead define:

(define first car)
(define rest cdr)

Now car and first are synonyms, as are cdr and rest.
This shows how simple Scheme is, it does not
matter to define whether it is dealing with numbers,
strings or procedures. The syntax is uniform and as
you can see from the following example,
procedures really are first-class citizens.

Let's re-write the procedure:

(define (my-sum-2 a-list)
(if (null? a-list) 0
(+ (first a-list) (my-sum-2 (rest a-list)))))

In this case (if was used instead of (cond. This (if
works differently from, for example, the one in
Python. There is no explicit else keyword, instead
everything is controlled by parentheses. The 0 after
(null? a-list) is the "then" part and (+ represents
the else branch. Should there be several
expressions in one branch you would need to use
(begin BLOCK). Let's have a closer look at the
solution. As you can see it is recursive. This is usual
in Scheme, and Scheme provides support for
effective processing. The optimisation conditions
are not right, however. You can check this in the
following way: set the language level to Beginner
and write the procedure into the upper window,
along with a procedure call to it:

Seite 69

——

PROGRAMMING WITH LISP

(define (my-sum-2 a-list)

(if (null? a-list) 0

(+ (first a-list) (my-sum-2 (rest a-list)))))
(my-sum-2 (list 1 2 3))

Highlight the text and click on “Step”. Now you can
see step by step how the result is calculated. You
will notice that all recursive calls are executed first
and that results are only calculated upon return
from the recursion. If you tried this with an
extremely long list it could lead to a stack overflow.
However, Scheme would not be Scheme if there
was not a more elegant solution: tail recursion

Tail recursion

The Scheme standard explicitly demands the
optimisation of tail recursion, and any compliant
implementation of Scheme must support it. What is
tail recursion? Tail-recursive programs do not have
to execute the entire recursion, but instead calculate
interim results for each step, which are then used in
the next recursive call. The recursion does not build
a stack frame for the recurring processes, instead
for example, a jump instruction can be used. Let's
put the procedure into a tail-recursive format:

(define (int-my-sum acc a-list)
(if (null? a-list) acc
(int-my-sum (+ (first a-list) acc) (rest a-1i2

st)))))
(define (my-sum-3 a-list)
(int-my-sum 0 a-list))

Normally you should define (int-my-sum internally
as (my-sum-3. This is not accepted in the beginner
levels of DrScheme, at a higher level however, the
following is not a problem:

(define (my-sum-3 a-list)

(define (int-my-sum acc a-list)

(if (null? a-list) acc

(int-my-sum (+ (first a-list) acc) (rest a-1i2

st))))
(int-my-sum 0 a-list))

This shows how easy it is to shift Scheme code.
Internal definitions can be applied at a higher level
or a previously global procedure can be used
internally. No special provisions have to be made in
order to do this. Should you ever have problems
with a long procedure you can simply export it bit
by bit, test its parts separately and then put them
back together once you have finished. This uniform
syntax is a curse as well as a blessing. Without the
support of an editor you are likely to despair of the
parentheses. But on the other hand it shows how
elegant the syntax can be. Please expand the
procedure again and look at the step by step
processing of the program. You will see that in this
solution results are calculated at each step. The
recursive call is the last one in this procedure and
represents the tail. As stated above, in Scheme this

62001 LINUXMAGAZINE 69

4

PROGRAMMING

®€066Scheme . gxd

31.01.2001 11:51 Uhr Seite 70

——

PROGRAMMING PROGRAMMING WITH LISP

can (and must) be replaced with an iterative
solution. Although | am not a Scheme guru, |
would like to say a few word about programming
style. Scheme programmers will certainly prefer
the last version, they can regard this approach as
a design pattern. acc stands for accumulator and
is a sort of informal standard for a variable that
accumulates values and is used to return a value
at the end of the recursion. You don‘t need to feel
tied to acc, but it pays in the long run to adopt
customs that have developed over time as it
makes things easier for the programmers that
come after you.

Other solutions

We have already found three different solutions to
the same problem. Now | would like to demonstrate
some other elements of Scheme programming
using different solutions:

e Jetrec

e named let

e iterative solutions

Solutions with (letrec are very similar to solutions
with internal procedures. A (letrec solution looks
like this:

(define (my-sum-with-letrec a-list)

(letrec ((my-int-sum

(lambda (acc a-list)

(if (null? a-list) acc

(my-int-sum (+ acc (first a-list)) (rest a-1i2
st))))))

(my-int-sum 0 a-list)))

Which one you prefer is a matter of taste, to me
the solution using an internal define is simply

Information

Structure and Interpretation of Computer Programs (SICP for short); Harold
Abelson and Gerald Jay Sussman,; MIT Press; second edition 1996

ON LISR, Advanced Techniques for Common Lisp; Paul Graham;, Prentice
Hall, 1994

Paradigms of Artificial Intelligence Programming: Case Studies in Common
Lisp; Peter Norvig; Morgan Kauffmann publishers; 1991

Common Lisp the Language; Guy L. Steele jr.; Digital Press; second edition
1990

Writing GNU Emacs Extensions; Bob Glickstein,; O’Reilly & Associates, 1997

Online:
ftp:/lftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/Evolution-of-
Lisp.ps.gz

MIT Scheme:ftp://ftp.cs.indiana.edu:/pub/scheme-repositorylimp
SCWM window manager: http://scwm.mit.edu/scwm/

Guile homepage: http://www.gnu.org/software/guile/guile.html
Elk: http:/lwww-rn.informatik.uni-bremen.de/softwarelelk/
Scsh: http:/lwww-swiss.ai.mit.edulftpdir/scsh/

Kawa: http://www.gnu.org/softwarel/kawa/

DrScheme: http://lwww.cs.rice.edu/CS/PLT/

Scheme: http://lwww.schemers.org

70 LINUX MAGAZINE 6 -2001

clearer. In the last solution you can see the first
use of (lambda; this defines an anonymous
procedure, in this case the name is set to (my-int-
sum by using letrec. The recursive call occurs in
the else part of the case differentiation and is
used in the same way as in the solution with an
internal define. | would like to come back to the
solution using the internal define. | thought it
would be clearer to start with the simplified
format. Actually, a solution with an internal
define would look like this:

define my-sum-2-revealed

lambda (a-list)

define my-int-sum

lambda (acc a-list)

if (null? a-list) 0

+ (first a-list)

my-sum-2-revealed (rest a-list))))))
my-int-sum 0 a-list)))

There are situations in which you can only use this
version. However, | find the previous definition
clearer and use it as often as | can. Using
anonymous procedures with lambda is the central
mechanism for all calculations within Lisp. If you are
interested you should have a look at the basics of
the lambda calculus sometime.

Named let - The last explicitly
recursive solution:

(define (my-sum-with-named-let a-list)
(let loop ((acc 0)
(al a-list))

(if (null? al) acc

(loop (+ acc (first al)) (rest al)))))

This is a very elegant solution in my opinion. Let’s go
through it step by step. You are already familiar with
the procedure definition, but (let loop is new. This is
what is called a named let, loop is simply a label or a
name to which you want to refer. The introduction
of loop variables is very readable: 0 is assigned to
acc and the initial list to al. During a recursive call
both variables change as follows: the value of the
first list element is added to acc and within the list
we move forward by one element.

"Iterative” solutions

The quotes around iterative are deliberate, because we
are not necessarily dealing with real iterative solutions,
although it does look that way. It is simply expected
that these are quasi-iterative and therefore efficient
solutions. Here is an iterative solution:

(define (my-sum-iterative-without-body a-list)
(do ((acc 0 (+ acc (first al)))

(al a-list (rest al)))

((null? al) acc)))

There's dense code for you. All the work is done in
the loop header, there is no loop body. C
programmers should get a feeling of déja vu at this

®€066Scheme . gxd

31.01.2001 11:51 Uhr Seite

point. So what is happening in detail? First, 0 is
assigned to acc, then in each iteration the value of
the first element of the remaining list is added to
acc. Theinitial list is assigned to the variable a/ and
then in each iteration the remaining list is assigned
to it in turn. The termination condition is ((null? al).
If this is true, the accumulator acc is returned.

Finally, I would like to show you a solution that
is more similar to Pascal or Eiffel. In this case we
move the update from the loop header to the loop
body. The solution looks like this:

(define (my-sum-iterative-with-body a-list)

; now a bit more pascal-ish or eiffel-ish ;-)
(do ((acc 0)

(al a-list))

((null? al) acc)

; body starts here

(set! acc (+ acc (first al)))

;; attention set! is a destructive update,han?
dle with care

(set! al (rest al))))

Not much has changed. The loop variables are
initialised, but the update now takes place in the
loop body rather than in the loop header. This is the
first time we have come across a destructive

71 $
PROGRAMMING WITH LISP

operation. Up to now none of the procedures had
any side-effects. In Scheme, procedures without
side-effects are good form. You ought to try to
adhere to this yourself. Destructive variants are
indicated by the suffix /, to show that these
methods should be used with caution. In principle
(set! variable new-value) has exactly the same effect
as an assignment. (set! acc (+ acc (first al))) is the
equivalent of acc = acc + first(al) in Python.

Where do we go from here?

In these examples we have looked at the basic
elements of Scheme programming. In
subsequent articles on the subject of
programming in Lisp languages | would like to
introduce you to other elements, for example
local variables, list operations, higher-order
functions, scoping, OO programming and similar
issues. | will also show you different Scheme
implementations and discuss their strengths and
applications.

As always | would welcome any comments,
suggestions or questions. My email address is:
Friedrich.Dominicus@inka.de u

AD?!

PROGRAMMING

62001 LINUXMAGAZINE 71

