
FEATURE WHAT IS EMBEDDED LINUX?

42 LINUX MAGAZINE 7 · 2001

Many users and programmers soon began to
create solutions for everyday office applications so
that now Linux increasingly covers this market
too. But what are the advantages of using Linux in
industrial plants?

Special requirements

It is hard for proper operating systems to establish
themselves in the world of microcontrollers and
programmable control systems. The requirements
are usually such that an ordinary office PC could not
meet them. Extreme fault tolerance, hard real-time
demands, communication capability, integration

into large measuring and control equipment, high
temperature and impact requirements are not
conditions with which you would expect your desk
PC to cope. A single general protection fault would
give rise to enormous expense and serious damage
and would not be tolerable. So it is no surprise that
microcontrollers and customer-specific computer
systems have so far occupied this market.

In fact, industrial problems are frequently highly
specialised. Many computers work as embedded
systems without graphical interfaces and are deeply
implanted inside measuring devices, switchgear
cabinets or plant, without being visible as
computers from the outside. It is precisely the

For some years now, the operating system with the

penguin has been the focus of growing public

interest. Linux is a Unix-type system and, as such, in

the early days it was well suited to deployment in the

server and networking domain. So it is hardly

surprising that many developers first wrote software

which was useful for this field. This rapidly gave rise

to the reputation of Linux as being a very stable

operating system that was suitable for long-term use.

Linux in Industry

SERVER,
DESKTOP AND

FACTORY
ROBERT SCHWEBEL AND BERNHARD KUHN

042embedder-introed.qxd 01.03.2001 14:38 Uhr Seite 42

requirement for high serviceability of the systems
which means a controller should, if at all possible,
only fulfil such functions as those for which it is
needed. All components that are not in use could
act as a potential source of error and also cost
money unnecessarily.

So why an operating system for industrial
applications, and why Linux? Because of its very
special genesis and the philosophies behind it, we
now have access to a system that in many cases can
fulfil the aforementioned requirements very well
and which fits in perfectly with the modern
structures in industrial plants.

The modular heart of the matter

Strictly speaking, Linux means only the operating
system’s kernel, which is responsible for all basic
administration tasks. These include the organisation
of program runs, the allocation of processor time to
individual processes, access to files, and the
network and other input and output components.
In short, all of the processes that matter in a system
when it is running.

One of the central concepts of Linux is
modularity. Not even the kernel of the operating
system is constructed as a monolith. In fact, most of
it has been realised in the form of so-called kernel
modules. The developer who installs a Linux kernel
on his system can decide, for each module, whether
he wants to have it permanently (static), only
temporarily (dynamic) or not at all, in his individual
installation. Unwanted parts can be left out without
affecting the stability of the system.

But this modularity does not end with the
operating system kernel – it continues in the
domain of systems software. Functions that are not
directly part of the kernel are obtainable as
independent program packets and strictly speaking
they do not really come under Linux either. The
principal one is the GNU Project, in the frame of
which practically all the essential tools and systems-
related components were developed.

Examples of such components are the
management and synchronisation of system time,
starting of timed programs, the provision of
network services such as mail, access to ISDN and
modem lines, embedded webservers, databanks
and much more.

There are great advantages in the fact that
these components are not part of the kernel. The
kernel already had the ability to monitor system-

related components in operation and to limit their
access. No program is completely error-free, but this
structure ensures that the kernel catches errors and
that their effects are limited. For instance, if the
keyboard and mouse of a computer are no longer
usable, in most cases it is still possible to log in via
the network and sort out the system.

The single-chip computer to the
mainframe: same sources
When, at the start of the nineties, Linus Torvalds
began to develop the kernel of Linux as a
programming exercise, he did not think that his
code would ever run on a processor architecture
other than his 386. Many developers have now
made their contribution to porting the kernel
onto other families of processors.

Nowadays Linux can be used on most of the
available 32-bit architectures. This means that
there are platforms available from the tiny on-
chip system (e.g. Axis Etrax100) in the embedded
application up to large multiprocessor computers
or mainframes (IBM S/390). The secret behind
this is, again, modularity: as only a relatively small
part of the total system has to be adapted for the
respective processor, most of the rest of the
components can be reused directly. It is only the
hardware-dependent segments that really have
to be re-programmed, which essentially means
hardware drivers and the boot procedure. All
higher-level services are not in fact part of the
kernel and most run unchanged.

For the programmer in development the saying:
write once, run everywhere, holds true. Software
developed on an ordinary PC can usually be
converted for the embedded platform without any
alteration, as long as attention is paid to the
equipment limitations to which the embedded
computer is subject.

FEATUREWHAT IS EMBEDDED LINUX?

7 · 2001 LINUX MAGAZINE 43

Empeg Auto-MP3-Player: http://www.empeg.com

[top]
Kerbango Internet
Radio

[below]
Digital video
recorder: Philips TiVO
Personal TV Receiver
http://www.tivo.com

042embedder-introed.qxd 01.03.2001 14:38 Uhr Seite 43

Hardware drivers made easy

Access to hardware is a privileged action. This
means that not every application program under
Linux can access an input/output port, perform
DMA or interrupt activities. In fact, hardware drivers
are realised as kernel modules. If a driver is to be
used for a self-developed card, this does not mean
the Linux kernel has to be re-converted. Modules
can be taken as completely independent programs,
which can be loaded into the system at run time
and removed from it again later. They run only with
the privileges of the system administrator (root) and
thus have full access to the hardware.

For drivers, the Unix concept ‘Everything is a file’
applies. So-called device files are closely linked with
the actual Linux driver, and these are found in the
directory /dev. This is not a real file on the hard
drive, but a virtual interface between application
program and kernel driver. Assuming a driver is to
be developed for a measuring card named
‘measuring card’, which digitises analogue signals,
then the pseudo file for the measuring card would
be called something like ‘/dev/measuringcard’.
Access to this file is now possible in the usual way:
The C programmer will open it like an ordinary file
using open(), read from its data using read() and
finally close it again using close().

The application program does not notice the
difference between the drive interface and a real
file. This means it is easy, in the test phase, to
provide a file with simulated data and thereby test
the behaviour of a program.

Software development with respect to the
driver is really simple. It is only necessary to
define which activities the driver is to perform
when the user opens or closes the pseudo file or
reads out its data. The least realistic devices,
though, deliver only pure data. Usual control
commands are also necessary, for example to
switch the measurement ranges in the
aforementioned measuring card. To do this there
is an additional function called ioctl() (Input /
Output Control). This can be used to implement
an interface for any additional commands for
initialisation, control and monitoring of the card.
There is minimal expense involved in integration
in the operating system.

Communication with the
environment included

Control of hardware components is important, but
equally important is the communication of an
embedded system with its environment. If a man-
machine interface in the form of a GUI is not
necessary for this, the network capabilities of Linux
come into play.

The simplest way to communicate with an
embedded system is via a serial port. All
components of this are available on every Linux
system, when support for the interface has been
integrated into the structure of the kernel. It is up to
the developer to choose which program monitors
the interface.

Free networkability

In the case of embedded network applications in
particular (firewall, VPN-bridge, intrusion detection
system), the Linux Kernel 2.4 in combination with
the corresponding programs is hard to beat. One
additional aspect: A few small and medium-sized
enterprises are currently facing the challenge of
having to make their products Internet-capable.
Whether it’s a lift system or a CNC milling machine
– it has to have an integrated webserver for remote
status queries.

In many mechanical engineering firms, this is
actually turning into a serious problem: electronics
and software play a subordinate role here and often
Assembler language and Dos are still being used. So
the path to Linux and GNU Tools is often shorter
than that to an overloaded integrated development
environment.

One interesting option is the use of a so-
called ‘getty’. These programs usually serve to
ensure that a local user can log onto a system
and work on the computer in text mode.
Because of the modular structure, however,
there is nothing wrong with starting a ‘getty’,
not on the local console (embedded systems may
not have a graphics card and no keyboard), but
on the serial port. If a modem is also used, the
device can be serviced remotely without any
additional actions.

Any terminal program (e.g. Hyperterm under
Windows, which comes with the package) can be
used to dial into the industrial computer from
anywhere in the world and work on it exactly as if
one were sitting at a local console. This functions
because of the concept mentioned above of the
pseudo files. Ultimately, the local console
(/dev/console), to the ‘getty’ program, is nothing
but a serial port (/dev/ttyS0), namely a file.

In principle, this means that any option
supported by Linux is open for communication. In
recent years the trend has been increasingly in the
direction of using Ethernet as ‘unified field bus’ for

FEATURE WHAT IS EMBEDDED LINUX?

44 LINUX MAGAZINE 7 · 2001

FrontPath ProGear Webpad
http://www.frontpath.com/

progear.htm

042embedder-introed.qxd 01.03.2001 14:38 Uhr Seite 44

industrial communication. Linux is ideally prepared
for this trend. Since its origins lie in the network
communication of the classic Unix computer, drivers
and all-important protocols for Ethernet are already
included. But this extends far beyond the systems-
related part. There is nothing wrong with installing
small webservers on a measurement computer, via
which data from measurement points can be
accessed directly from the company’s own Intranet.
So there is no obstacle to integration in a company-
wide network structure. All standard protocols from
the IT world such as HTTP, ftp, Telnet etc. can be
used.

The integration of other field buses has now
become a reality: there are now drivers available for
almost all the major field buses (Profibus, CAN,
RS485, ...), so that a Linux PC can also be deployed
at the interface between classic field bus technology
and modern industrial Ethernet.

The more communication options there are
available, the greater the role-played by the
question of access security. After all, the
competition must not for example gain access over
the Internet to measurement values from a quality
control system. But here, too, conventional IT
technology can be of further assistance. With
‘secure shell’ there is a protocol available with which
one can make fully encrypted connections.

With this, authentication of users and the entire
communication are performed with the latest
encryption technologies. Lastly each network
service can be encapsulated into a ‘secure shell’ and
tunnelled through what may be an insecure
network.

Resource saving

It’s hard to believe how small Linux can be:
Uncompressed kernels with 256K are quite possible,
such as with uClinux on Motorola 68K derivatives.
In this case, however, there is no TCP/IP stack, which
makes for limited use.

Usually, depending on the application and
target platform, you should reckon on 1 to 4Mb
flash and 2 to 8Mb Ram requirement. Other
embedded operating systems are (assuming the
same requirements) not much more economical.

Development tools en masse

In most cases, applications for embedded
controllers are created using a cross-development
system. This usually contains an integrated
development environment with compiler, debugger
and all the necessary tools. In addition to these, an
in-circuit emulator is often needed if the application
is to be tested directly in the target circuit.

In Linux-based systems modularisation also
extends to the domain of development systems. The
most frequently used GNU Compiler Suite GCC
provides front-ends and back-ends. The former are
there to translate a programming language, while
the latter create machine code for a specific
processor. If, for example, code is to be created on
an Intel PC, which is running on a PowerPC, only
the right back-end needs to be chosen. The Intel
back-end can be used in the test phase, which
allows the code to be translated, tested and
debugged in one’s own time on the development
computer. Conversely, with different front-ends a
wide variety of programming languages can be
used (such as C and Pascal combined in one
project).

But there are also other advantages to network
capability. If software is to be developed for a small
processor board, which has no hard disk of its own,
but is running directly from the Flash Rom, the
following procedure would be suitable. The
embedded system does not boot a kernel located
on the flash disk in the development phase, but the
complete file system together with all operating
system parts and application programs is integrated

FEATUREWHAT IS EMBEDDED LINUX?

7 · 2001 LINUX MAGAZINE 45

[left]
Bluetooth/DSL-
Webpad/Telefon
Ericson H610

[right]
Indrema
Entertainment
System games
console

Adomo Webpad

042embedder-introed.qxd 01.03.2001 14:38 Uhr Seite 45

via the network. The processor board does not
‘notice’ any difference here, as to whether the files
are present locally on the Flash disk or via the
network connection. Developers have the option of
inserting new program versions for the running
system directly onto its hard drive. The GNU
debugger ‘gdb’ which is part of GCC is equally
network-capable. This means any application can
be remotely debugged without using any special
tools. If programming is complete, all you need do is
transfer the complete development data tree from
the large computer onto the Flash disk.

Real time with Linux

Hard real-time demands are very important for
many applications in the field of measuring and
control technology. If a control device does not
respond within precisely defined time limits, vital
measurements could be lost or control commands
be missed, which might very well lead to damage to
the plant or production stoppages.

There are a number of real-time expansions
available for Linux. With these, firstly a small, hard
real-time capable kernel runs on the hardware,
which then only assigns the actual Linux kernel
processor time and resources when there are no
real-time programs waiting which need them. This
ensures that the real-time programs, completely
independently of events at Linux level, always get
the scheduled processor time, thus guaranteeing
that response times to interrupts of approx. 10µs
can be achieved without any problem.

The advantage of this concept is that all normal
operating system services are still available on the
real-time capable computer. So such things as status
information can be viewed via a webserver or a
graphical display, or data can be saved to a hard
disk.

Graphical interfaces

Depending on the equipment on a computer, there
are some very different options for visualisation.
Control devices can send textual outputs to a two-
line display with serial port. If a real graphical user
interface is desired there and then, there are various
toolkits available for this, which offer all the usual
widgets of modern window interfaces. The X-
window system normally used on Unix systems is
network-transparent. This makes it possible to send
the output of a controller together with all control
options via the network into a control room or even
to a far remote computer via the Internet. For
systems with very modest resources there are also a
variety of graphics toolkits available which offer
fewer features but on the other hand can be
accommodated in a few hundred kilobytes of
space.

Double investment protection
based on free licences
By now many of the options available under Linux
have been introduced. One great peculiarity here
are the licence models which are used for most

FEATURE WHAT IS EMBEDDED LINUX?

46 LINUX MAGAZINE 7 · 2001

Mini-Linux Distributions

Name URL Floppy/ RAM Kernel Content / Comment

HDD requirement

hal91 http://home.sol.no/~okolaas/ 1.44Mb not known not known Ancestor of all mini and embedded

hal91.html Linuxes, designed as rescue diskette and ‘mobile Linux’

Floppyfw http://www.zelow.no/floppyfw/ 1.44Mb 8Mb 2.2.13 Offers static router and firewall

functionality, Floppyfw stems from hal91

LOAF http://loaf.ecks.org 1.44Mb 4Mb 2.0.36 Linux on a floppy with diverse network clients

such Telnet, ssh, nfs, ftp, lynx and network

configuration tools

Tomsrtbt http://www.toms.net/rb 1.722Mb not known 2.0.36 Contains over 100 Unix commands, most

important man-pages and some kernel

modules for network cards and SCSI adapter on a

reformatted diskette (82 tracks, 21 sectors)

Trinux http://www.trinux.org 2 x 1.44Mb 12-16Mb 2.2.x Contains various tools for network monitoring and

detection of network errors

mulinux http://mulinux.firenze.linux.it/ 1.722Mb 4Mb + Swap not known Contains various text-based network clients such

as mail and newsreader and the Web browser Lynx

and the necessary network tools for making

connections

LRP http://www.linuxrouter.org 1.44Mb - 12-64Mb not known The Linux Router Project is scalable from a simple

120Mb IP-masquerader or Remote Access Server up to a

WAN router – can also be used for X-terminals.

SmallLinux http://smalllinux.netpedia. 1.44Mb 2Mb-4Mb 1.0.9 Small Linux basic system with especially low

net/smalllin.htm memory requirement due to the use of the 1.0.9

kernel

042embedder-introed.qxd 01.03.2001 14:38 Uhr Seite 46

parts of Linux. All parts of the operating system
itself are Free Software. Kernels and the
overwhelming majority of the system-related
tools as well as a great many programs are
licensed under the GNU General Public Licence
(GPL). The purpose of this is to protect Free
Software. Software licensed under the GPL can
be altered and even sold, without licence fees
being payable. The only condition is that code
derived from GPL-licensed code must be released
again under the GPL.

There are some advantages to this procedure.
GPL software is mostly developed by many
programmers scattered all over the world,
collaborating over the Internet. Many programs (for
which, with other operating systems, you would
have to reinvent the wheel) are already available as
GPL software and can be used immediately.
Developers can devote their entire concentration to
their own tasks. For the software components
created by the Free Developer Community, you will
usually receive excellent support by e-mail, at no
cost. The channels of communication are short, and
suggested changes are often realised very rapidly by
the author. Since the worldwide developer
community is very large, for any problem someone
will quickly be found who has a ready solution – or
is creating one.

If software is developed solely for Linux, but
uses no GPL code, then obviously it is possible to
produce non-free software. Nor is the interaction
between free and non-free programs a problem,
so those proprietary algorithms can also receive
full protection. The often-quoted saying that
under Linux you always have to give away your
code is completely false. However, anyone who
develops software according to a Closed Source
Model is also unable to benefit from the
advantages of Free Software.

In the domain of automation in particular the
procedure for the development of Free Software
often poses no great problem. Customers want to
buy solutions to problems, not the software as
such. Many problems in this field are so highly
specialised that the actual performance of a
company consists of adapting and tailoring
software to the requirements of their customers.
Investment cycles in industry are considerably
longer than in the IT domain and so Free Software
is also an important argument when it comes to
security of investment.

If a firm discontinues a proprietary product, the
customer has a problem. The best thing that can be
done in this instance is to undertake an expensive
migration to another generation of software. The
worst case scenario is that the product is worthless
and cost-intensive restructurings of entire plants
have to be undertaken. But if Free Software is used,
the customer can himself entrust a reliable company
to maintain the status quo, since he does have
access to the sources.

In full bloom

What started out as tinkering with small projects such
as the Linux Router Project has now become an
economic factor of increasing importance. The figures
in this article can show only a small number of the
embedded devices developed and built in the past year.

More than 120 enterprises have now joined the
‘Embedded Linux Consortium’. Nor should the 24
well-known Japanese firms in the EMBLIX
consortium be forgotten. So anxious new
customers no longer need to complain about the
lack of support on the part of industry.

Conclusion

Linux is now an operating system to be taken seriously
for industrial applications. It is robust, can be adapted
to circumstances by modular means, is platform
overlapping and network-capable. The same system
runs from a battery-powered 386SX with 8Mb Ram
via PC/104 components up to industrial PCs, desktop
computers, parallel computers and mainframes.
Security is a fundamental part of the system and does

FEATUREWHAT IS EMBEDDED LINUX?

7 · 2001 LINUX MAGAZINE 47

One example of embedded Linux:
‘Spectator’ powder quality control
system
From the company Zeutec Opto-
Elektronik GmbH. There is a ‘big’
industrial computer in the
switchgear cabinet, which controls a
compressed air-controlled sampling
unit. The PC scans optical sensors
and generates measurement values
as a result, which are sent via an
Ethernet link to a control room. The
measurement device is currently in
the trial stage near Cologne. The
complete control of the solenoid
valves, scanning of the sensors and
evaluation of the data is done with
software written in Perl. Standard
protocols are used for
communication (Telnet, HTTP, ssh).

042embedder-introed.qxd 01.03.2001 14:38 Uhr Seite 47

not have to be added on later at great expense and
half-heartedly. Existing cross-development tools
make software testing simple and elegant, while
the programmer does not have to get used to new
tools, regardless of whether he is programming for
the desktop or an embedded system. If necessary
there is the option of complying with hard real-time
requirements.

Of course, Linux is not the answer to all the
problems that can arise in industrial use. But it does
have the potential to unite at least part of the
diversified software market for embedded systems.
The fact that in qualitative terms, extremely high
value products are being created can be seen from
the victory parade of server and desktop
applications. ■

FEATURE WHAT IS EMBEDDED LINUX?

48 LINUX MAGAZINE 7 · 2001

Info

Real-time expansions:
http://www.realtimelinux.org

Linux Router Project
http://www.linuxrouterproject

.org
Embedded Linux Consortium

http://www.linux-
embedded.org

Japanese Linux Consortium
http://www.emblix.org

Embedded Linux News and
Reports

http://www.linuxdevices.com
Portal site on automation
systems http://www.linux-

automation.de
Comprehensive newsticker

http://www.linuxdevices.com
Linux Lab Project

http://www.llp.fu-berlin.de

■

Embedded Systems

What is an embedded system? There is no simple, universal answer to this since conceptions
diverge depending on the sector and domains of application. For this reason, the following
explanation is only an attempt at a definition.
An embedded system interacts with its (usually electromechanical) environment
(embedding system). No human user is needed here, or if so, he has no need of any
knowledge whatsoever about the technical innards of the embedded system to be able to
use the system as a whole.
Classic embedded systems in industry are, for example, the process control computer of a
CNC milling machine (Computer Numeric Control) or a modern SPS plant. In the past decade
a whole range of consumer products have come onto the market, all containing electronics
which are equally embedded systems – such as mobile phones, video recorders etc. Ideally,
computers ought also to be embedded systems for the end user – but the definition above
applies best to the Apple Macintosh, as here at least ‘knowledge of the technical innards’ is
necessary. Although the Surfstation from Mobilcom only differs very slightly in its principle
architecture from a home PC, this is a true-blue embedded system. In fact, among small and
medium-sized enterprises standard PC components have been gaining more and more
ground in new developments of embedded systems – assuming small to medium production
runs and short product cycle times. No wonder: Commodities Off The Shelf, COTS for short,
often cost just a fraction of comparable proprietary industrial solutions and at the same
time are considerably more flexible (but also more prone to errors).
These embedded PCs obviously cannot be used in every situation however. Often, hostile
environments and a notorious lack of space force the adoption of application-specific
solutions. In the case of large production runs this is obligatory anyway.

Pneumatically-actuated
sampling unit to inspect

powdery substances.

The author
Robert Schwebel has been

involved with Linux since 1994.
Since completing his degree in

electrical engineering he has
been developing measurement

systems for automation and
environmental technology
under Linux and drivers for

hardware components.

042embedder-introed.qxd 01.03.2001 14:39 Uhr Seite 48

