
[top]
Figure 1:

The GNOME panel with
weather applet.

[below]
Figure 2:

The same panel, now with
‘Bon appetit’ applet.

PROGRAMMING GNOME PROGRAMMING

74 LINUX MAGAZINE 7 · 2001

Applets

A LITTLE
SNACK

THORSTEN FISCHER

You don’t always have to use a

fully-grown program. Lots of little

tasks can also be handled by

applets, which live in the panel and

are just waiting to be called up.

Applets are small and thrifty. Unlike the big Gtk+ or
GNOME programs, they don’t take up much space
on the screen and (in most cases) nor do they lay
claim to much in the way of resources. They are
especially suitable for status messages of all kinds;
such as for processor capacity, the battery display
for a laptop, or a weather view that tells whether or
not it’s raining. So you don’t even have to get up
from the keyboard and take a look.

In terms of programming, applets are not
substantially different from normal GNOME
programs. In Listing 1 you can see a normal
program for GNOME, showing only an empty
window. It contains the usual steps: Define
internationalisation, create application window,
connect with the standard signals and then display.
The definitions in lines 3 to 5 are created
automatically and passed on during compilation,
when you are working with a source text tree that
you have created previously.

An empty applet behaves very similarly, and at

this point (as a variation on the Hello world theme) I
would like to call it the ́ Bon appetit´ applet. And
accordingly, what does it do first but display Bon
appetit. This can be seen in Listing 2.

The defines in lines 4 to 6 have again the same
origin as before. In line 2 the header file applet-
widget.h still has to be included, to allow access to
the library function for applets.

The first really new part can be seen in line 16:
The program is not initialised by gnome_init(), but
by a command from applet_widget_init(). The
parameters of this function are the program name,
the program version, the command line parameters
argc and argv and the arguments for parsing the
command line by the library libpopt. But this
procedure is not going to be discussed just yet.

Applets are a particular type of widget, as can be
seen from the command applet_widget_ new() in
line 18. The applet must communicate with the
panel, so as to be able to insert itself at the right
spot. Occasionally this communication fails right at
the start, so that no applet can be created. If so, then
there is a void pointer in our example applet, which
we catch in the lines 19 to 22 and then end the
applet with an error message. In the following lines a
label is merely created and inserted into the applet.

074gnomeproged.qxd 01.03.2001 15:08 Uhr Seite 74

As the applet functions perfectly normally as a
container-widget, in theory any other widget could
be inserted. But for the moment it remains to be
seen which widget would produce sense and which
would not.

Applets require their own parameters during
compilation. If our file is called Bon
appetit_applet.c, then the following command is
correct:

gcc Bon appetit_applet.c `gnome-config libsU
cflags gnome gnomeui applets` -o bon appetitU
_applet

If the applet is compiled and started (which can
also be done from the command line as with a
normal program) then it appears as if drawn by a
ghostly hand in the panel, as can be clearly seen
from Figure 2.

Decoration

So much then for the first applet. If you click on it
with the right mouse button, two menu points
called Move and Remove will be seen, and their
names speak for themselves. You can also see
another menu point, Panel, behind which the
familiar panel configuration is hiding. At this point
you may wish to add your own menu points. This
can be done without any trouble at all. With the
function applet_widget_register_stock_callback
new menu points can be generated and also
immediately connected with the callback functions.

In our example, which is listed in full in Listing 3,
there is a menu point About, which displays a
corresponding box. There are also functions that
remove the menu points again or make complete
sub menus.

Notification

If you have put the code together and perhaps even
installed it in its own code tree (with the aid of
which compilation on any systems can be done very
easily) then you would surely also like the applet to
be put to good use. To do this it should appear in
the menus seen by the user when clicking on the
panel with the right mouse button and selecting
add applet. For this, basically, a .desktop file is
necessary, which should look roughly like Listing 4.
This file must be copied into the directory

prefix/share/applets/category

where the prefix is the root directory of the GNOME
installation (in SuSE for example /opt/gnome) and
the category corresponds to the type entry in the
.desktop file, thus here Application.

More stuff

The requirements for an applet are of a somewhat
different nature than those of an ordinary program

with windows. Of course, I that know that in the
sense of the X-server an applet also has a window;
ultimately a window is nothing but an area in which
it is possible to draw.

For example it should be able to react to vertical
and horizontal orientations on its own, and also to
changes in size, because after all, GNOME has seven
different sizes for an applet, extending from 12 to
128 pixels in size. As soon as the size of the panel

PROGRAMMINGGNOME PROGRAMMING

7 · 2001 LINUX MAGAZINE 75

Listing 1: Skeleton of a normal GNOME
1: #include gnome.h
2:
3: #define PACKAGE "gnome-std"
4: #define VERSION "0.1.0"
5: #define GNOMELOCALEDIR "/opt/gnome/share/locale"
6:
7: int main(int argc, char *argv [])
8: {
9: GtkWidget *app;
10:
11: bindtextdomain (PACKAGE, GNOMELOCALEDIR);
12: textdomain (PACKAGE);
13:
14: gnome_init (PACKAGE, VERSION, argc, argv);
15:
16: app = gnome_app_new (PACKAGE, PACKAGE);
17: gtk_signal_connect (GTK_OBJECT (app), "delete_event", gtk_main_quit, NULL);
18: gtk_signal_connect (GTK_OBJECT (app), "destroy_event", gtk_main_quit, NULL);
19:
20: gtk_widget_show_all (app);
21:
22: gtk_main();
23:
24: return TRUE;
25: }

Listing 2: The first bon appetit applet
1: #include gnome.h
2: #include applet-widget.h
3:
4: #define PACKAGE "Bon appetit applet"
5: #define VERSION "0.1.0"
6: #define GNOMELOCALEDIR "/opt/gnome/share/locale"
7:
8: int main(int argc, char *argv [])
9: {
10: GtkWidget *applet;
11: GtkWidget *label;
12:
13: bindtextdomain (PACKAGE, GNOMELOCALEDIR);
14: textdomain (PACKAGE);
15:
16: applet_widget_init (PACKAGE, VERSION, argc, argv, NULL, 0, NULL);
17:
18: applet = applet_widget_new (PACKAGE);
19: if (!applet)
20: {
21: g_error ("cannot create applet.\n");
22: }
23:
24: label = gtk_label_new (" Bon appetit! ");
25: applet_widget_add (APPLET_WIDGET (applet), label);
26:
27: gtk_widget_show_all (applet);
28:
29: gtk_main();
30:
31: return TRUE;
32: }

074gnomeproged.qxd 01.03.2001 15:08 Uhr Seite 75

PROGRAMMING GNOME PROGRAMMING

76 LINUX MAGAZINE 7 · 2001

Listing 3: A full applet
1: #include gnome.h
2: #include applet-widget.h
3:
4: #define PACKAGE "Bon appetit-applet"
5: #define VERSION "0.1.0"
6: #define GNOMELOCALEDIR "/opt/gnome/share/locale"
7:
8: void change_pixel_size_callback (appletWidget *applet, int pixels, gpointer data)
9: {
10: printf ("The panel is %d pixels in size.\n", pixels);
11: }
12:
13: void change_orient_callback (appletWidget *applet, PanelOrientType orient, gpointer data)
14: {
15: switch (orient)
16: {
17: case ORIENT_UP:
18: printf ("The panel is on the bottom.\n");
19: break;
20: case ORIENT_DOWN:
21: printf ("The panel is at the top.\n");
22: break;
23: case ORIENT_LEFT:
24: printf ("Right of the panel!\n");
25: break;
26: case ORIENT_RIGHT:
27: printf ("Left of the panel!\n");
28: break;
29: default:
30: printf ("No orientation !?!\n");
31: break;
32: }
33: }
34:
35: void about_callback (appletWidget *applet, gpointer data)
36: {
37: GtkWidget *dialog;
38: const gchar *authors [] = {"Thorsten Fischer @derfrosch.de>", NULL};
39:
40: dialog = gnome_about_new (PACKAGE, VERSION, "(c) 2000 Thorsten Fischer", authors,
41: "Sampleapplet for Linux-Magazine.\n Code subject to the GPL.", NULL);
42:
43: gtk_widget_show (dialog);
44:
45: return;
46: }
47:
48: int main(int argc, char *argv [])
49: {
50: GtkWidget *applet;
51: GtkWidget *label;
52: GtkWidget *frame;
53:
54: bindtextdomain (PACKAGE, GNOMELOCALEDIR);
55: textdomain (PACKAGE);
56:
57: applet_widget_init (PACKAGE, NULL, argc, argv, NULL,0,NULL);
58:
59: applet = applet_widget_new (PACKAGE);
60: if (!applet)
61: {
62: g_error ("Cannot create applet.\n");
63: }
64: gtk_signal_connect (GTK_OBJECT (applet), "change_orient",
65: GTK_SIGNAL_FUNC (change_orient_callback), NULL);
66: gtk_signal_connect (GTK_OBJECT (applet), "change_pixel_size",
67: GTK_SIGNAL_FUNC (change_pixel_size_callback), NULL);
68: applet_widget_register_stock_callback (APPLET_WIDGET (applet), "about", GNOME_STOCK_MEU
NU_ABOUT,
69: _("About"), about_callback, NULL);
70:
71:
72: frame = gtk_frame_new (NULL);
73: applet_widget_add (APPLET_WIDGET (applet), frame);
74:
75: label = gtk_label_new (" Bon appetit! ");
76: gtk_container_add (GTK_CONTAINER (frame), label);
77:
78: gtk_widget_show_all (applet);
79:
80: gtk_main();
81:
82: return TRUE;
83: }

074gnomeproged.qxd 01.03.2001 15:08 Uhr Seite 76

alters – and when the applet is first started – the
signal change_ pixel_size is sent out, which can be
caught by a corresponding callback.

In the example in Listing 3 this is done using the
function change_pixel_ size_callback. Although as a
programmer one should never work on the
assumption of standard situations, comparisons
with possible pixel sizes can be done using
constants; they all bear the prefix PIXEL_SIZE_ and
are then called ULTRA_TINY, TINY, SMALL,
STANDARD, LARGE, HUGE and RIDICULOUS, with a
size of 12, 24, 36, 48, 64, 80 or 128 pixels
respectively. No one can do anything with the last
size, but it’s nice to take a look at the anti-aliasing of
the icons.

The representation of a widget may also depend
on the orientation of the panel. It is therefore
convenient that an applet always receives a signal
from the panel, when it changes its orientation, and
also of course immediately on first starting the
applet. It is called change_orient and is caught in
the example (Listing 3) with the callback function
change_ orient_callback.

It may appear miraculous that the constants,
which can exist as the result, produce the exact
opposite of what they say at first glance. However,
it is not actually the position of the panel that is
being passed on, but the direction in which a menu
would extend if it had to be created.

It should also be noted that the connection with
the signal should take place before additional
content is added into the still-empty applet with
applet_widget_add(). Otherwise this does away
with the option of being able to respond
accordingly to the orientation.

Happy Gnomes! ■

The author
Thorsten Fischer is a student of
computer science and/or
media constancy. He can be
contacted at
frosch@derfrosch.de.

PROGRAMMINGGNOME PROGRAMMING

7 · 2001 LINUX MAGAZINE 77

Info

Source texts for the article: http://www.derfrosch.de/weichewaren/linux-
magazin.html
Gnome-core applet writing HOWTO: http://cvs.gnome.org/lxr/source/gnome-
core/panel/APPLET_WRITING
Gnome applet Tutorial:
http://developer.gnome.org/doc/tutorials/applet/index.html

■

AD??

Listing 4: The desktop file for an applet
[Desktop Entry]
Name=Bon appetit applet
Comment=An applet which says Bon appetit
Exec=Bon appetit_applet
Icon=
Terminal=0
Type=Application

074gnomeproged.qxd 01.03.2001 15:08 Uhr Seite 77

