
KNOW HOWTRIPWIRE

7 · 2001 LINUX MAGAZINE 61

Tripwire: Part Three – an integrity checker

SAFETY
FIRST

KLAUS BOSAU

File system integrity

checkers are increasingly

popular, but hardly any

of their countless

users are aware of their

forerunner: the hash

function. The third

instalment in our Tripwire

series is intended

to close that particular

knowledge gap.

The development of the one-way hash function, or
message digest function, had its origins in a
cryptographic requirement. To speed up the time-
consuming process of signing messages by
encrypting them with the sender’s private key, it
made sense to first reduce the content volume to a
more manageable size, the fixed-size hash value or
message digest.

The special function of this interim step, which
is only distantly related to the task of key-based
encryption mechanisms such as RSA or ElGamal,
leads to a more effective implementation and
therefore to a significant increase in speed. Instead
of sending the encrypted original of the message,
now the original itself and the encrypted message
digest are being sent.

First, the recipient decrypts the message digest
with the sender’s public key. A subsequent
comparison of the result with a message digest

produced from the original will provide information
about the authenticity (and integrity) of the
message. In order for modified signatures to be able
to fulfil this authentication function, suitable
candidates have to meet high standards.

Message blocks

For instance, the function f must apply to every part
of a message. That is mostly a question of design. A
process called padding ensures that different sized
messages are treated in the same way. In the case of
MD5, a message is padded until its size is an
integral multiple of 512 bits, so that the
compression function (the heart of the hash
function) can be processed in blocks within the next
computational step.

The workflow is reminiscent of Unix pipelines.
Each 512-bit message block is involved once and

061tripwireed.qxd 05.03.2001 10:08 Uhr Seite 61

KNOW HOW TRIPWIRE

62 LINUX MAGAZINE 7 · 2001

used for the continued modification of a given
initial hash value, which is in the form of four 32-bit
constants. The 128-bit hash value of the message in
question is computed as the final output (see Figure
1). By chaining the interim results Hi – called
chaining values – every part of the message is
adequately included in the calculation. However, in
the compression function itself there are large
disparities (see Figure 2).

The function must not be invertable, so that it will
be impossible to work out the message content from
knowing the message digest. This requirement has
been pretty well met up to now, since the message
digest normally tends to be much smaller than the

Figure 2: Inner workings of the MD5 compression function.

The compression function has been implemented as a hash value pipeline consisting of 64
identically structured individual operations. Each operation processes only one of the total of
sixteen 32-bit words Xk in the current message block. It follows therefore that a word is used
exactly four times by the pipeline. This happens in successive phases, or rounds. The diagram
shows how the four 32-bit chaining variables aj,..., dj, which form the current chaining value, are
linked. In this Fn denotes the non-linear function belonging to round n, which is derived from bit
operations (example: F2(b,c,d)=(b^d) v(c^ d)), »x« denotes an addition (modulo 2^32) and »<< s«
a bit rotation by s positions).
(Tj) is a prepared field of trigonometric origin (sine function), that provides every one of the 64
operations with its own additive constant. Index k and the shift amount s change with each
operation: k = k(j), s = s(j).
The expression A = ((A + Fn(B,C,D) + Xk + Tj) < s) + B can be implemented effectively by using four
32-bit registers (A, B, C, D) as a buffer for the chaining variables, one of the reasons for the
popularity of MD4.
The functional construction ensures the thorough mixing of the message’s data words Xk - hence
‘hash’. For example, the multiplicative character of pipelines makes it practically impossible to
predict how even the change of one message bit will affect the output, making it equally difficult
to discover suitable alterations that would result in a message producing a specific desired hash
value.
The crucial problem turns out to be ensuring high speed (leading to a restriction to logical bit
operations and register-friendly variable formats) without giving rise to the dangers of analysis
through over-simplification (as happened with MD4). How difficult it is to arrive at a design,
which combines acceptable speed with sufficient complexity, is evident from the widespread use
of the ageing MD4 operation type, which often forms the basis for new developments due to its
familiarity. For a detailed description of the structure, please refer to Rivest’s original publication.

Figure 1: Block schematic of MD5.

If f denotes the compression
function and Bi represents
the i-th of a total of n
message blocks, then this
can also be very concisely
expressed as a set of
equations:

H0 = K
Hi = f(Hi-1,Bi) i=1,2,...,n

The hash value of the extended message N = B1,...,Bn would then be Hn.

061tripwireed.qxd 05.03.2001 10:08 Uhr Seite 62

KNOW HOWTRIPWIRE

7 · 2001 LINUX MAGAZINE 63

message itself, and every extreme compression
inevitably destroys information. Occasionally some
experts manage, after a careful analysis of the
functionality, to design an inverse function, mostly for
simplified variants. Although this is not able to
reproduce the original itself, it can produce a message
with the same message digest. The days of that
particular hash function are then numbered.

This happened in 1998 for a simplified variant
of MD4 with two instead of the usual three rounds.
Ironically, a leading player in this was the same Hans
Dobbertin of the German Federal Information
Security Agency (BSI), who later participated in the
development of the European equivalent of SHA-1,
the RIPEMD-160.

Unique message digest

It must be impossible to produce for any given
message, another message with different content
that would result in the same message digest.

Hash functions that achieve this are described as
weakly collision-free, because these conditions do
not make very high demands of the algorithm itself.

Apart from the danger of algorithm inversion
already outlined, which is a special case in this
context, the algorithm in question must also be able
to resist brute-force attacks. These are a constant
threat due to ever increasing computer
performance. The offset of a forged message is
simply altered until the resulting message digest
matches that of the original.

In practise this can be done by appending
spaces to the ends of some lines. For 30 lines it does
not take much effort to produce 2^30 duplicates in
this way. To make this more difficult, the bit pattern
of the original length is therefore inserted at the
end of the extended message during padding.

A processor with a performance of 12.5 Mips
(very slow by today’s standards) can manage this in
0.42 seconds for a 47K file in case of a CRC-16 hash
value and in four hours for a CRC-32 one. It is
therefore not difficult to produce a forgery of the
same size as the original. However, if the format of
the hash value is increased, the limits of this method
become obvious. The rapidly decreasing probability
of matching (of the order of 2-n for a message
digest size of n bits) can barely be offset by
increased computational performance for formats
of 64-bits. The 128-bit format, which is the current
standard, should be able to withstand this sort of
attack for quite a while yet.

Strongly collision-free functions

It should also not be possible to find any two
messages with a different content that just happen
to have the same message digest. This condition is
much harder to fulfil than the previous one, which is
why these functions are called strongly collision-free
hash functions.

Empirical investigation shows that collisions are
not uncommon for hash value sizes up to 64-
bits. That is not surprising, especially since the
probability of a collision for a message digest
with a size of n bits is of the order of 2-n/2,

Figure 3: The birthday paradox

The birthday paradox is the name given to the deductive result of the
astonishingly large disparity in the statistical probability of two specific events:
A birthday party consists of N guests. The probability that one of them shares a
birthday with the host is p’ = 1-(364/365)N, but p = 1 - 365!/((365-N)! * 365N) for
the event of the birthdays of two guests randomly coinciding.
The implication of this result quickly becomes clear if we calculate the number
of guests needed for a 50 per cent probability. It turns out that while the first
condition can only be met with 253 people, the second only requires 23. The
reason for the large difference is the fact that the increase in the number of
possible guest pairs is of course quadratic, while the increase in potential
matches with the host is only linear in relation to the number of guests.
The analogy to the probability of random collisions is immediately apparent. It
is indeed possible to derive the order 2-n/2p mentioned previously by
substituting the number of days in a year with that of all possible hash values
with a length of 2n bits. This makes the total number of guest the number of
messages required to achieve a certain degree of matching.
A good approximation of the 50/50 probability is therefore N P 1,2 * 2n/2
(more precisely: N P (1 + [root of](1 + 0,69 * 2n+3))/2). On the other hand, it
would take a total of N’ P 0,69 * 2n P 0,48 * N2 messages to find a match for a
specific hash value (host-birthday)! The result for N obviously provides a useful
criterion for the collision resistance of an n-bit hash function.
For the testing of formats beyond 128-bits, which are barely manageable in
terms of computation, handier duplicates with short signatures are used, such
as 16 or 32-bits. It is then possible to use the experimentally computed collision
frequency – ideally one collision to N hash values – to extrapolate the
behaviour of the original. Note: significant disparities can point to an unequal
distribution of the hash value probabilities. That would, of course, be
unwelcome, as an attacker could take advantage of it.

061tripwireed.qxd 05.03.2001 10:08 Uhr Seite 63

KNOW HOW TRIPWIRE

64 LINUX MAGAZINE 7 · 2001

which is much greater than in the classic case of
a brute-force attack.

The once unrivalled cyclic redundancy checks
CRC-16 and CRC-32 fail spectacularly in this
respect. Out of 250 000 files tested on various
computers 14 000 pairs with identical 16-bit hash
values were found, and there were still three pairs
with an identical 32-bit hash value. This aspect only
loses its significance for hash value formats far
beyond the 64-bit mark.

This result is a good example of the birthday
paradox (Figure 3). It forms the basis of perhaps the
most promising of all attack types: the Birthday
Attack. The aim of this brute-force variant is to
obtain a digital signature through random collision.

Unhappy birthday

In the Birthday Attack, the attacker produces two
documents: a forgery that requires a signature and
an innocuous message which the recipient would
have no hesitation in signing. Then 2n/2 variants of
each with almost identical content are produced,
along with the corresponding message digests in n-
bit format. Minor alterations to the text that convey
the same meaning are sufficient.

Now the probability of finding two documents
with the same message digest but belonging to
different groups must be greater than 1/2. The
attacker then only needs to get the innocuous
version digitally signed by the recipient (encryption
of the message digest with the private key) and can
then send the corresponding signature together

with the suitable variant of the forgery. It is now
impossible for a recipient to recognise the message
as fake. The culprit has achieved his purpose
without ever having gained access to the private key
of the target.

Known weaknesses...

Consequently only a message digest of sufficient
size can offer protection. In this titanic struggle that
is not a constant. While the 128-bit message digest
was all the rage until recently, some experts are
already demanding a 160-bit alternative today.

PCs are not a threat in this respect. Even though
a 200 MHz Pentium processor only takes nine
milliseconds to calculate an SHA hash value for a
50K file, it would have to produce 2^81 P 2.4 *
10^24 variants to find a match. A usable result
would take 7 * 10^14 years of computing time, too
long for most of us.

Even hardcoding or parallelisation via the Internet
are no help for these formats in the foreseeable
future, unless it was possible to shorten the
computing time through clever choice of process.
Such an attempt, which undermined the trust put in
MD5 until then, was made in 1996 by the German
cryptographer Hans Dobbertin (see Figure 4).

... and the tandem pipeline

This hash function research can practically be
transferred to MD5. MD4 was once pestered by an
inconspicuous attack from two of Dobbertin’s

Info

http://www.faqs.org/rfcs/rfc13
21.html
H.Dobbertin: RIPEMD with
two-round compress function
is not collision-free Journal of
Cryptology
H.Dobbertin: Cryptanalysis of
MD4, Fast Software Encryption
- Cambridge Workshop.
Lecture notes in Computer
Science vol 1039
B.den Boer and A.Bosselaers:
An attack on the last two
rounds of MD4. Advances in
Cryptology - Crypto ‘91
CryptoBytes
ftp://ftp.rsasecurity.com/pub/cr
yptobytes/crypto1n3.pdf
B.den Boer and A.Bosselaers:
Collisions for the compression
function of MD5, Advances in
Cryptology, Proc. Eurocrypt ‘93
ftp://ftp.cert.dfn.de/pub/docs/c
rypt/ripemd160.ps.gz

■

Figure 4: Example of an attack on MD5.
The cryptographer Dobbertin was only able to discover collisions for the MD5 compression function, i.e. an initial
value k and two different 512-bit blocks B and B’, for which the following is true: f(k,B) = f(k,B’). However, if the
hash value H = H2 of a message N = B, B2 is written in the form f(H1, B2) = f(f(K,B), B2)), the consequences of
these results become clear immediately. The different messages N = B, B2 and N’ = B’, B2 created during padding
would produce the same hash value H, if it were possible to match the initial value k of the collision created to
the initial value K of the MD5 hash function by suitable alteration of the discovered process.
The attack takes advantage of the process used by the MD5 compression function for reading in the words of the
message block. To simplify matters, Dobbertin assumes that the blocks B and B’ only differ in one of the 16
words, e.g. X14. Since every word is read exactly once in each of the four rounds, following a set pattern which
varies for each round, the four diverging steps in the calculation of the hash values for B and B’ can be identified
immediately: step 15 (round 1), step 26 (round 2), step 36 (round 3) and step 51 (round 4).
The basic idea is to produce two harmonised inner collisions in the segments 15 to 26 and 36 to 51 by selecting
appropriate chaining values. The chaining values of B and B’ should therefore match again before steps 27 and
52, ensuring that they would develop identically in the three other segments. The solution found should lead to
identical compression values f(k, B) and f(k, B’) and therefore to a collision in the compression function.
These assumptions lead to a set of equations in which the chaining values had to be logically regarded as an
unknown. This simplification through certain assumptions reduces the problem to the iterative solution of
equations that only contained the non-linear functions Fn of the MD5 operation, known quantities ci and

[delta]x, as well as an unknown quantity x:
Fn(c1, c2, x) + c3 = Fn(c4, c5, x + [delta]x)

In this way, both the chaining values from step 15 onwards and the message blocks B and B’ (functions of the now known chaining
values) become accessible to calculation. Details of the calculation methods can be found in RIPEMD and MD4. Finally, the initial
value k could be found through simple backwards calculation, starting with step 14. The process was later implemented as a PC
application. It took a Pentium processor ten hours to track down a collision for the MD5 compression function.

061tripwireed.qxd 05.03.2001 10:08 Uhr Seite 64

colleagues. Three years later MD4 was history. In cryptobytes, page
5, the reader can find a specific example of random collision, i.e.
two messages that produce the same message digest despite
having different contents. The computing time needed was less
than one hour.

The future will show how long Rivest’s MD5 will stand up to the
inventiveness of ambitious cryptographers. There are already (more)
secure alternatives: the newcomers SHA-1 and RIPEMD-160 exhibit
some distinctive features that make attacks of the kind described
above considerably harder (see Figure 5).

The one-way hash function has developed into a universal tool.
The secure transmission of passwords and digital timestamping (as
realised in eternal logfiles) are further applications for this
cryptographic star.

After this excursion into the high-flying world of hash functions,
the next part will return to more down-to-earth topics and give
practical tips for operating and securing Tripwire shields. We will also
be introducing an extension that breathes new life into the slightly
outmoded Academic Source Release. ■

ad
Figure 5: RIPEMD-160, a state of the art hash
algorithm
The structure of RIPEMD-160 is significantly different from
that of MD5. The signature format has increased from 128
to 160 bits and a fifth data word was required ej. This is

intended to deter brute-force attacks. The added bit
rotation << 10 on the other hand has its origins in the
shrewd manoeuvre of two certain gentlemen (Boer and
Bosslaers).
In order to avoid specific procedures during the reading of
the words for a message block as in MD5, the
development team around Hans Dobbertin is relying on
the new combination of two conventional pipelines, each
of which only contributes to the compression value as a
summand. As both of the complementary steps i and i’ in a
round use a different sequence for reading in (additional
permutation [pi](n) = 9n + 5 (mod 16) of the data words
for the current message block at i’) and also exchange
information, conservative attacks using the internal
collision model will fail here.
This sort of reinforcement is achieved at the cost of a nine
per cent drop in performance as compared to SHA-1, but it
is probably the most effective defensive concept against
keen analysers. RIPEMD-160 does not come with any
licensing conditions, and because of its pipeline structure
it is easily applied to double-length signatures.

061tripwireed.qxd 05.03.2001 10:08 Uhr Seite 65

