
COVER FEATURE DATABASE DESIGN

18 LINUX MAGAZINE 8 · 2001

Computing reality is not imaginable without
databases. The dynamic Web applications that are
so popular these days could not manage without
them. There is now a large selection of server
software, tools and development environments in
which to operate database systems under Linux. But
before the implementation of a specific database
server can be discussed, it is necessary to agree on
the model that can be represented in the data
structures.

Put simply, a database is a collection of non-
redundant data that is used by different applications
in parallel and simultaneously. Compared to classic
data storage forms, where each application had its
means of storing data, they offer the following
advantages:

• Applications are protected against any extension
of the base data and changes in their structure.

• Application development is independent of the
way the data is organised and accessed.

• Applications are no longer linked in terms of
changes to individual applications.

• Data consistency is provided centrally by the
database itself.

This allows more flexible data utilisation, avoids
wasting disk space and saves a lot of program
maintenance and development time.

Down with redundancy

Why is it so important to eliminate redundancy?
Redundancy in this context means that the same

Before the completion of a

perfectly programmed

database we have the hard

work of database modelling.

This article shows ways and

means of achieving a clean

database design.

Designing Data Models

DATA
WORKSHOP

BERNHARD ROHRIG

018-Database.qxd 27.03.2001 16:42 Uhr Seite 18

information is stored several times in the same
database. Should individual representations occur of
the same fact that contradict each other
(amendments carried out in one place, no
amendment in another), we call this data
inconsistency. Once a database has become
inconsistent it takes a lot of effort to restore the
desired integrity. By avoiding redundancy in the first
place, inconsistencies can be ruled out from the start.

A considerable number of processes have been
developed to eliminate data redundancy. Many of
these are based on complicated mathematical
procedures (relational algebra) and the resulting
models are not always very clear. However, for
practical purposes it is sufficient to know the most
important methods with which to avoid a large
proportion of redundancy-pitfalls, as these are not
always apparent at first glance.

A central tool in this is entity relationship
modelling on the one hand, and the use of
normalisation theory on the other.

First approaches

As a database developer you are faced first of all
with producing a more or less exact description of
the section of reality which is going to be
represented in the data structures you are
developing. We shall use the administration of data
relating to PCs and operating systems as an
example.

Let’s assume that you like to experiment with
different Linux distributions and other operating
systems, and that you own several PCs for this
purpose. Since the built-in hard disks are normally
not sufficient for such experiments some of the PCs
have hot swap facilities, which allow the easy
installation of hard disks. It is of course also possible
to install several operating systems on one hard disk.

In order to represent real objects and their
relationships to each other as a structured data set,
the colloquial terms need to be classified. That is a
first step on the way from chaotic diversity to a
model based strictly on logic.

It is useful to classify according to object class,
attribute and relationship. Table 1 shows a
suggestion for our example. If you tried to draw up
this sort of overview yourself, you might come up

with different results, because the assignment
cannot always be unambiguous.

If a given fact is classified as a relationship in
one context, it can also appear as an object in
another, just as a seemingly independent object can
suddenly become merely a simple attribute of
another object or vice versa. An example: on the
one hand, the object vendor is an object class that
has specific attributes (for instance address,
telephone number). On the other hand it can
sometimes be sufficient to regard vendor as an
attribute of PC.

What this means is that the model doesn’t have
to be correct, it has to be consistent. This is not
about truth, but rather functionality. The same or a
roughly similar section of the real world can be
modelled quite differently in two separate databases
- and both models could still serve their purpose. In
the rest of this article, the information from table 1 is
used to draw up a rough structural diagram, the
entity relationship model, or ER model for short.

Elements and relationships

An entity relationship is a technique that makes it
possible to express the relationships between facts

COVER FEATUREDATABASE DESIGN

8 · 2001 LINUX MAGAZINE 19

Table 1: Classification of modelling objects
Real Term Object Class Attribute Relationship
PC x
Hard Disk x
PC Type x
Hard Disk Type x
Vendor x x
PC Hard Disk x
Vendor Address x
Operating System x
Operating System Supplier x
Operating System on Hard Disk x

Figure 1: A simple
structural model (entity
relationship)

018-Database.qxd 27.03.2001 16:42 Uhr Seite 19

and transactions in the real world within a data
model. The defined object classes with their
attributes are regarded as units or entities,
between which a certain relationship exists. This
relationship is represented in ER-diagrams, where
we distinguish between four classes of
relationships, listed in table 2.

You can see the ER-diagrams for the
relationships between the object classes PC and
vendor in figure 1. The following relationships
exist:

• One PC has one or more hard disks (m).
• Every hard disk is installed on a PC or lying in a

cupboard (c).
Overall, a relationship of the type c : m (c to m)
exists between hard disk and PC. Such relationships
are then defined for all object classes of the data
model and summarised in a structural ER-diagram
(see figure 2).

Again, there is no definitive solution. Different
database designers arrive at different layouts given
the same facts. The only important thing is that the
resulting model is suitable for the intended purpose
and that any redundancy is avoided.

In this type of diagram you will find three main
forms of interrelations:
• hose featuring relationship type 1.
• Those featuring relationship type c, but not

relationship type 1.
• Those featuring only relationship types m and mc.

Relationships 1, 3 and 4 in figure 2 belong to the
first category, relationship 2 to the second and
relationship 5 to the third. Their subsequent
handling depends on the category. However, this
requires us to know a bit more about the internal
structure of the data model.

A look inside

In relational data models (SQL databases) the data
of each object class are collected in a sort of table,
called a relationship. The table rows, also called
data tuples or data records, store the object details,
while the columns - also called fields or attributes -
contain the respective value for each attribute. This
is similar for post-relational or object oriented
databases, except that storage is not two but multi-
dimensional.

It is important to note that the storage
sequence of the rows and the field is of no external
significance; they are also referred to as unordered
tuples or unordered attributes.

Object attributes are identified through the
relevant field names , objects through the primary
key. A primary key is a sort of index that has a unique
value or combination of values for each data record.
Normally an additional attribute is introduced for this
purpose, whose value is often automatically
assigned by the database when a record is created.
Using this primary key, each data record in a table
can be uniquely identified. This also means that a
primary key field must not contain a NULL marker,
indicating no value, in any of the records.

COVER FEATURE DATABASE DESIGN

20 LINUX MAGAZINE 8 · 2001

Table 2: Association types in ER models
Symbol Type of relationship Example
1 to one Each PC has one vendor.
c to one or none Each hard disk is in one PC or in none.
m to at least one Each PC has at least one hard disk.
mc to none, one or several An operating system is on no, one or several hard disks.

Figure 2: ER model for
administration of

PC/operating system

Table 3: Basic relation PC
Attribute Content
PCID PC identification, primary key
vendor PC manufacturer
type PC type
purdate Purchase date

Table 4: Basic relation HD (Hard Disk)
Attribute Content
HDID Hard disk identification, primary key
vendor Hard disk manufacturer
type Hard disk type
capMB Hard disk capacity in MB
PCID Built into which PC?

Table 5: Basic relation OS (Operating System)
Attribute Content
OSID Operating system ID, primary key
vendor Manufacturer/distributor
namev Name/version of operating system
HDID Installed on which hard disk?
date Date of OS installation

Table 6: Basic relation Vendor
Attribute Content
VID Vendor ID, primary key
vname Vendor company
vaddress Address
vcity Town
vzip Postcode
vtel Telephone number

018-Database.qxd 27.03.2001 16:42 Uhr Seite 20

The primary key also allows links with related data
records in other tables using a foreign key. This is
simply a reference to the primary key of one table
through a corresponding value in a field of another
table. The database has to know, of course, which
field is related to which other field.

The individual SQL dialects offer appropriate
facilities for this purpose. An important rule for all
foreign key relationships is referential integrity,
which stipulates that foreign key fields in a
dependant table must only contain NULL values and
values that already exist as primary key values in the
referenced table, but never other values which might
possibly appear there at some point in the future.

Any good database system will monitor the
compliance with referential integrity independently,
which frees application programmers from this task.

Basic relations in detail

The relationships between primary and foreign keys
for our data objects can now be defined on the
basis of the ER model. The first step is to list all
object classes with their corresponding attributes
according to tables 3 to 5. To start off, we are going
to assume that the attribute vendor is common to
the three object classes.

This results in a relatively simple data model. It is
apparent that the relationships of the objects to each
other can be represented by rather simple key
relations. Each table contains a numeric data record ID
as its unique primary key field. Hard disks are linked to
the corresponding data records in the PC table
through the PC-ID. This makes it possible to have
more than one hard disk per PC and to represent this
fact in the database. The relationship between the
individual operating systems and the hard disks on
which they are installed is organised in a similar way.

As pretty as this model is to look at, it does have
its hidden dangers, which we are now going to
expose and remove step by step.

Consolidating the model

Even at first glance we can spot one redundancy,
which could cause a lot of aggravation later during
the operation of the database. The attribute
vendor for the manufacturer, distributor or
supplier of a device or program is only
unproblematic as long as its values are not
repeated in one or more tables. However, this is
bound to happen once the latest version of a
much loved (or hated) operating system is
released, if not before, for instance when the
letters IBM appear in a second table.

What happens if a manufacturer’s name or an
address that is stored with it changes? The
corresponding fields in all affected databases must
be amended. If just one of them is forgotten, the
data will be inconsistent. This redundancy is
resolved relatively easily, by introducing an
additional object class vendor. The corresponding
basic relation is shown in table 6. The attribute
vendor in the three other tables needs to be
changed to the foreign key VID accordingly.

Other redundancy problems are not quite so
easy to spot. Therefore we will fall back on methods
from ER modelling and normalization theory. The ER
model enables us to create clean primary/foreign
key relations with three simple rules:
• Rule 1 applies to all 1:x relationships; in figure 2

those are relations 1, 3 and 4. This rule states that
the primary key on the 1-side - here always VID
from vendor - must be included as a foreign key
attribute in the basic relation on the x-side, where
we have either m, c or mc. NULL markers are not
permitted for these foreign keys. We have already
complied with this rule in the previous step.

• Rule 2 applies to all relationships that have c on at
least one side, with the exception of 1:c
relationships, which are already covered by rule 1.
This rule states that the primary key attribute on
the c-side will be included as a foreign key
attribute into the basic relation on the other side
(m, mc) of the relationship. NULL markers are
permitted for these foreign key attributes. To
comply with this rule we must allow the property
NULL marker permitted for the attribute PCID in
the basic relation HD. In MySQL, probably the
most widespread SQL version under Linux, this is
achieved by the following type of definition:

create table HD ... PCID int null;

COVER FEATUREDATABASE DESIGN

8 · 2001 LINUX MAGAZINE 21

Table 7: Additional basic relation INSTALLATION
Attribute Content
INSTID ID of the OS installation, primary key
OSID foreign key, ID of the installed operating system
HDID foreign key, ID of the hard disk, on which OS has been installed

Figure 3: Resolving the
mc:mc relationship in
the ER model

018-Database.qxd 27.03.2001 16:42 Uhr Seite 21

COVER FEATURE DATABASE DESIGN

22 LINUX MAGAZINE 8 · 2001

Info

Dr. Bernhard Rohrig:
Datenbanken mit Linux. C&L

Verlag, Vaterstetten, 1998.
ISBN 3-932311-32-9

■

The author
Dr. Bernhard Rohrig has

written several books on Linux
and Unix and can be contacted

via the Internet under
http://www.roehrig.com. You

can also find out there what
else he gets up to apart from

writing books.

• Rule 3 applies to the remaining relationships in
the ER model, those that do not feature a 1 or c-
side. An example is relation 5 in figure 2, a mc:mc
relationship. Each hard disk can contain one or
more operating systems, and sometimes it can be
empty, while each operating system is installed on
one or more hard disks or lying around unused.

This somewhat complicated relationship must be
untangled a bit for a proper relational model, as it
cannot be established quite so simply using primary
and foreign keys. Rather, we require an additional
interim table, which apart from its own primary key
contains nothing except the combined primary keys
of the two other tables. Let’s resolve the mc:mc
relationship into two 1:mc relationships by
introducing a new basic relation INSTALLATION
along the lines of table 7.

The relationship between the entities hard disk,
operating system and installation can now be
expressed as shown in figure 3. At the same time
the attribute HDID must be removed from the
operating system table, as there is no longer a direct
link between an operating system and the hard disk
on which it is installed.

How normal would you like it?

To put the finishing touches to our data model the
individual basic relations have to be normalized.
This means processing them according to certain
formal mathematical criteria that have become
known as normalization theory. These contribute to
the detection of hidden redundancies within the
model and thereby help to avoid inconsistencies in
the underlying data. There are several normal forms
of base tables. For practical application it is
sufficient to check compliance with the first, second
and third normal form for each of the tables
involved. Normally the database designer will use a
large quantity of test data supplied by the client.
These should contain as many characteristic
combinations of attribute values for the individual
object properties as possible.

There is no space here for a more detailed
description, just some methodological hints. A
relation is considered to be in the first normal form
when it does not contain any attributes with
multiple values. These are fields in a table
containing several values. It is possible to imagine a
violation of the first normal form by table 3, if there
are several PCs of different types from one vendor,
and the corresponding entries are in one and the
same row. This can be easily avoided by consistently
assigning each PC its own row in the table.

The other data objects (tables) should be treated
in a similar way to comply with the first normal form.
This requirement may appear trivial, as it is usually
adhered to instinctively by most database designers.
However, it is useful to be aware of it in order to
recognise a possible violation of the requirement in
an actual set of data and to avoid it.

A table is in the second normal form if it has a
primary key that consists of a single attribute. It is
therefore useful always to work with such primary
keys, as we have done in our example. You can find
other possibilities in the literature. You can also find
out there how to convert non-compliant tables into
second normal form.

Compliance with the third normal form means
that no attribute (table field) must be functionally
dependent on any other attribute apart from the
primary key. This is hard to determine without
actual data.

The finished data model

A few comments about the tables in our example.
Table 7 is in the third normal form from the
beginning, due to its structure. Table 6 could lead to
inconsistencies with large data volumes, as for
instance the post code can be functionally
dependant on the address. We can put a stop to
that without any problems by simply splitting the
table further.

In the same way it would be possible to create
the facility to store several telephone numbers for
one vendor (without violating the first normal
form). Table 5 will be in the third normal form as
soon as one vendor offers at least two operating
systems - which has been known to happen.

It is just as simply to prove compliance with the
third normal form for table 4. The only chance of a
violation would be a fixed assignment between
PCID and HDID; as the combination of the other
attributes would then also seem to depend on
HDID. However, this is ruled out by the assumption
that we are using swappable hard disks in at least
some of the PCs.

Finally, with the appropriate data, it would be
possible to prove for table 3 that no attribute is
dependant from any other apart from the PCID.

Thus our data model is solid and the way is clear
for a conversion using one of the current databases.
Admittedly things don’t always go as smoothly as in
our example. Solutions and suggestions for more
complicated cases can be found in the literature. ■

018-Database.qxd 27.03.2001 16:43 Uhr Seite 22

