
The ”Structured Query Language” SQL is
the lingua franca of the database world.

Almost all relational databases understand SQL
these days, and it is not difficult to learn, either. The
language originated in the IBM research
laboratories, where it was developed in the
seventies. There has been a common standard from
the American standardisation authorities, ISO and
ANSI, since 1992: SQL-92. Most databases
introduced in this magazine conform to a subset,
Entry Level SQL-92.

There are two aspects to the tasks of database
languages: creation of data structures (data
definition) and data manipulation. Purists therefore
distinguish between ”Data Definition Languages
(DDL)” and ”Data Manipulation Languages (DML)”.
SQL however is both.

The following article will therefore be covering
both aspects of the language. We will be take a
data model as an example, and we will be
converting using PostgreSQL. The version used must
be 7.0 or later, as earlier versions cannot cope with
foreign keys, which are a part of this data model.

To enable us to communicate with the database
we need a front end. In the simplest case that will
be the program psql; however, simple graphical or
Web-based interfaces exist as well. Whichever we
are going to use, we have to start by building a data
structure, that is to say, by creating tables or
relations. We will now create the simplest table:

CREATE TABLE vendor (
vid INTEGER,
vname VARCHAR(40),

vaddress VARCHAR(100),
vcity VARCHAR(40),
vzip VARCHAR(7),
vtel VARCHAR(40),
PRIMARY KEY (vid));

As you can see, the syntax is simple: the name
(”attribute” in database language) is followed by
the data type, and optionally by the field length.
Afterwards we have the option of determining
which attribute is to be used as the primary key.
None of the entries are case-sensitive, upper case
is used here only to differentiate between
command syntax and attributes. Each SQL
command ends with a semicolon and can extend
over several lines. If it does, the psql prompt will
change from database name=> to database name
(->, to indicate that the command is not
complete.

In the relation pc below, a foreign key indicated
by the keyword references appears in addition to
the primary key. We have also introduced the data
type DATE:

CREATE TABLE pc (
pcid INTEGER,
vid INTEGER REFERENCES vendor,
type VARCHAR,
purdate DATE,
PRIMARY KEY (pcid));

As we are only concerned with syntax, these two
tables should be sufficient. Now it’s time to provide
some content for them. In most cases the command
INSERT INTO is used for this purpose:

COVER FEATURE SQL

30 LINUX MAGAZINE 8 · 2001

Getting started with relational databases can be easier than

you might think. Once you have created your data model it

has to be converted to SQL. The following two pages will help

SQL novices to do just that.

SQL in brief

NOTES ON
QUERIES

ULRICH WOLF

030-SQLbasic.qxd 27.03.2001 13:58 Uhr Seite 30

INSERT INTO vendor VALUES (
1,’Red Hat’,’10 Alan Turing Road’,
`Guildford’,’GU2 7YF
‘01483300169’);

Postgres also provides the COPY command, which
unfortunately does not conform to the standard.
This is an easy way of reading in data from ASCII
files that have for example been exported from a
spreadsheet.

Ultimately it is not data entry options that
distinguish databases, but the diversity of query
facilities, in the case of SQL using the SELECT
command. In its simplest form SELECT * FROM
table; returns a complete table with all computers
and all vendors, as in Listing 1. That is of course not
sufficient. Listing 2 therefore presents a more useful
query, which returns all computers manufactured by
Sun, together with the purchase dates. As you can
see, there is only one. Nested queries are possible in
almost all database systems. In MySQL they have to
be written differently; this is described in the
comparison between Postgres and MySQL
elsewhere in this issue.

The SELECT command is the heart of SQL and
offers an enormous range of possibilities: sorting by
specific criteria, grouping of results, pattern
matching with LIKE and many more, which are
beyond the scope of this article. We will just give
one more short example of how entries can be
amended with a combination of UPDATE and
SELECT, after all, that is part and parcel of database
functionality. In the admittedly somewhat contrived

case that we only remember the purchase date of
the server, but now the telephone number of the
vendor, who we do not know has changed, we can
update it as shown in Listing 3.

Finally two options for getting rid of data.
Complete tables are removed without any fuss
using DROP tables;, individual rows with DELETE
where conditions can be set in the same way as for
UPDATE. A simple example: The Notebook has been
sold and we are going to remove its record from the
database:

DELETE FROM pc
WHERE type = ‘Laptop’;

There are a number of pitfalls to watch out for,
especially something called cascading deletion
when using foreign keys. Nevertheless, these few
glimpses of SQL should be enough for you to take
your first steps, and then get more deeply involved
if necessary. The subject can be more exciting than
you might think, and SQL has hardly become
unfashionable, despite object orientation and XML.
There is no shortage of literature on SQL. ■

Info

SQL Tutorial:
http://dblabor.f4.fhtw-
berlin.de/morcinek/sqltutor

PostgreSQL Homepage:
http://www.postgresql.org

For creating online Postgres
databases and ”playing”:
http://pgdemo.acucore.com

■

COVER FEATURESQL

8 · 2001 LINUX MAGAZINE 31

Listing 1: Two small tables with simple queries
osadmin=> select * from pc;
pcid | vid | type | purdate
———+——-+————————————-+——————

1 | 4 | Desktop PC | 20/01/1999
2 | 4 | Laptop | 24/12/2000
3 | 5 | Sun server | 06/08/1992

(3 rows)
osadmin=> select * from vendor;
vid | vname | vaddress | vcity | vzip | vtel
——-+————-+————————————+——————-+———-+——————-

1 | Red Hat | 10 Alan Turing Road | Guildford | GU2 7YF | 01483300169
2 | SuSE | Theobald Street | Borehamwood | WD6 4PJ | 02083874088
3 | VA Linux | Whitehill Way | Swindon | SN5 6QR | 08702412813
4 | IBM | PO Box 41 | Portsmouth | PO6 3AU | 0990426426
5 | Sun | Guillemont Park | Camberley | GU17 9QG | 01276451440

(5 rows)

Listing 3: UPDATE combined with SELECT
osadmin=> update vendor SET vtel = ‘01252421730’ WHERE
osadmin-> vid =
osadmin-> (SELECT vid from pc where purdate = ‘06/08/1992’);
UPDATE 1
osadmin=> select * from vendor
osadmin-> ;
vid | vname | vaddress | vcity | vzip | vtel
——-+—————+————————————-+———————-+———-+—————

1 | Red Hat | 10 Alan Turing Road | Guildford | GU2 7YF | 01483300169
2 | SuSE | Theobald Street | Borehamwood | WD6 4PJ | 02083874088
3 | VA Linux | Whitehill Way | Swindon | SN5 6QR | 08702412813
4 | IBM | PO Box 41 | Portsmouth | PO6 3AU | 0990426426
5 | Sun | Guillemont Park | Camberley | GU17 9QG | 01252421730

(5 rows)

Listing 2: Using SELECT
osadmin=> select type, purdate from pc where vid =
osadmin-> (select vid from vendor
osadmin(> where vname = ̀ Sun’);

type | purdate
—————————————+—————-
Sun server | 06/08/1992
(1 row)

030-SQLbasic.qxd 27.03.2001 13:58 Uhr Seite 31

