
PROGRAMMINGQT PROGRAMMING

8 · 2001 LINUX MAGAZINE 65

Qt is an application development framework,
written from the ground up as object-oriented in
C++. Apart from Linux, it is also available on various
other Unix platforms and also – in the professional
version – under MS-Windows 95/98/NT/2000.

As a true multiplatform framework, Qt
guarantees single-source compatibility: A Linux
application written with pure Qt compiles and runs
without any code changes under MS-Windows,
too. It looks exactly the same there and also
behaves just like any other MS-Windows application
– it may even be a bit faster and more stable.

To make this possible, Qt encases not only
graphical elements in objects, but also the other
operating system functionalities such as files, printer
or even network connections.

Basis and superstructure

Qt is the basis of KDE, so if you have installed KDE
2, there must automatically be a current version of
Qt on your computer. If not, download the Qt
source code direct from the manufacturer Troll Tech.

Before we pounce on the graphics, first comes
the obligatory Hello World (see Listing 1). We use a
QLabel to display the string Hello world in its own
window. In lines 1 and 2, the necessary header files
are integrated. QApplication is indispensable at this
point, as this class is responsible for the event
handling of the window system.

By command

So that the application can be controlled by
command line parameters, the application object a

is initialised in line 6 with the arguments argc and
argv. Lastly, in line 8 we create the label and set the
desired text string. The first parameter of each class
constructor in this case is always a pointer to the
parent object, usually a groupbox, a main window
or a dialog.

Since the label in this example is to be used as
its own window, without a parent, we simply assign
a null pointer here. In line 11 we set the label of the
application as main widget. The result of this is that
under X11 common command line parameters such
as -geometry are applied to the label and when the
window is closed the application is ended.

Finally, the label in line 12 is made visible and
control is handed over using a.exec() to the event
loop of the application. If you would like to try out
the example, save it as hello.cpp and compile it
with:

g++ -O2 -o hello hello.cpp \-I$QTDIR/includU
e -L$QTDIR/lib -lqt

Integrating graphics into Qt programs

GRAPHICAL
REVOLUTION

MATTHIAS ETTRICH

Now that programming with Gtk/Gnome has been

comprehensively examined, it is time to take a look at

Qt as well. In this article we show how graphics can be

built into a program quickly and easily with QCanvas.

Listing 1: hello1.cpp
1:#include <qapplication.h>
2:#include <qlabel.h>
3:
4:intmain(intargc,char*argv[])
5:{
6:QApplicationa(argc,argv);
7:
8:QLabell(0);
9:l.setText("HelloWorld");
10:
11:a.setMainWidget(&l);
12:l.show();
13:returna.exec();
14:}

065-qtprog.qxd 28.03.2001 8:48 Uhr Seite 65

PROGRAMMING QT PROGRAMMING

66 LINUX MAGAZINE 8 · 2001

OK, that was an easy text – now for the graphics.
Copy your favourite image into the same directory
as hello.cpp, in the example we are using
qtlogo.png. Line 9 of the program flies out and in its
place we create a pixmap with

QPixmap pm("qtlogo.png");

and set this on the label with:

l.setPixmap(pm);

So that this code will also compile, it will also need
an #include </qpixmap.h> at the start of the
program. As a little gimmick we have also set the
property ScaledContents to TRUE. This means that
the image will always be adapted to the size of the
window.

Listing 2 shows the completed program.
Naturally, the pixmap object does not load the

image itself, it merely encases this functionality.
Image formats are implemented in Qt’s dynamic
image-IO-system. This makes it possible to add
drivers for additional image formats.

Driving force of development

PNG, BMP, XBM, XPM and PNM are supported as
standard, and drivers for JPEG, MNG and GIF can,
if required, be compiled into the Qt library. At
http://www.trolltech.com/qtprogs you will also
find a link to the free library Free Image from
Floris van der Berg. These expand the image-IO-
system by adding drivers for example for TARGA
and TIFF.

If, in the program, you replace every mention of
Pixmap with Movie, you can also load and display
animated GIFs and MNGs (if Qt was compiled with
the appropriate options).

Even more so than with images, one can also
start with a canvas. A canvas is an optimised 2D
graphics area, on which any so-called items can
exist. These can be more or less anything, texts,
polygons, circles or again, animated images – so-
called Sprites.

QCanvas is one such graphic area, and
what’s more it is fairly powerful. Qt comes with
a neat example called Canvas, which clarifies
the options of the class. Examples of
applications for QCanvas are of course games,
but also vector-oriented drawing programs,
diagram or graph editors, presentation
programs and practically everything that
requires dynamic 2D graphics.

Listing 2: hello2.cpp
1:#include <qapplication.h>
2:#include <qlabel.h>
3:#include <qpixmap.h>
4:
5:intmain(intargc,char*argv[])
6:{
7:QApplicationa(argc,argv);
8:
9:QLabell(0);
10:QPixmappm("qtlogo.png");
11:l.setPixmap(pm);
12:l.setScaledContents(TRUE);
13:
14:a.setMainWidget(&l);
15:l.show();
16:returna.exec();
17:}

A typical application for QCanvas:
An animated graph editor.

The implementation is just some
100 lines in length.

065-qtprog.qxd 28.03.2001 8:48 Uhr Seite 66

PROGRAMMINGQT PROGRAMMING

8 · 2001 LINUX MAGAZINE 67

A broad canvas

In view of this flexibility of QCanvas it is interesting
to know that the class was originally called
QwSpriteField and was developed by Warwick
Allison, who at that time was still outside TrollTech.
Target applications were primarily 2D games, for
example Qt Net Hack or the Kasteroids game from
KDE. Warwick has now become head developer at
TrollTech Australia and is in charge of Qt/Embedded
development. QCanvas as generalised Spritefield
has been an official component of Qt since Version
2.2.0.

The C++ class in Listing 3 defines a Logo sprite.
The sprite moves freely about the canvas and turns
automatically when it reaches the edge or comes
across another sprite. The implementation of Logo
is not complicated (around 65 lines), but does not
make much of a contribution to understanding at
this point. For reasons of space we have therefore
omitted it, but the complete listing is on this
month’s coverdisc.

Here is just a brief description of the individual
methods: initPos() selects an initial position at
random, initSpeed() a random speed. Both
functions use the Linux random number generator
rand(3) for this.

Spritely animation

It starts to get really interesting in advance(). This
method works out the animation of the sprite. It is
triggered by the canvas itself, so you don’t need to
call it up manually. Canvas supports animations as a
standard feature. To make sprites fly around, all you
need to do, using setVelocity(x,y), is to define a
horizontal and a vertical speed. This is certainly
enough for simple objects such as for example the
bullets in an arcade game, but otherwise it is fairly
boring.

This is where advance() comes into play. The aim
of this method is to adapt movements of an item to
the current situation on the canvas. advance() takes
a parameter stage for this, which is either 0 or 1. The
canvas firstly calls up all animated items advance()
with 0 (Phase 0) and then with 1 (Phase 1).

The clash

In Phase 0 the items should, if at all possible, not
move their position but start calculations for
further motion, for example in collision with other

items. QCanvasItem offers a function for this,
collisions(), which sends back a list of all items
which would collide with the item being called up
if their speed remained constant. In Phase 1 the
items then execute the previously calculated
movement.

This two-phase approach makes it possible to
maintain a certain fairness. Otherwise sprites added
first to Canvas might take precedence in collisions,
which does not, however, necessarily correspond to
the physical conditions of a game world.

Listing 3: logos.cpp
01: #include <qapplication.h>
02: #include <qcanvas.h>
03: #include <stdlib.h>
04:
05: classLogo:publicQCanvasSprite{
06: voidinitPos();
07: voidinitSpeed();
08: public:
09: Logo(QCanvasPixmapArray*pm,QCanvas*c);
10: voidadvance(intstage);
11: };
12:
13: intmain(intargc,char*argv[])
14: {
15: QApplicationa(argc,argv);
16: QCanvascanvas(800,600);
17: QCanvasPixmapArraypm("qtlogo.png");
18:
19: for(inti=0;i<6;i++)
20: (newLogo(&pm,&canvas))->show();
21:
22: canvas.setAdvancePeriod(30);
23:
24: QCanvasViewcview(&canvas);
25: a.setMainWidget(&cview);
26: cview.show();
27: returna.exec();
28: }

In main() six logo sprites are created and made
visible in a simple loop. The speed of animation is
set using canvas.setAdvancePeriod(), in the example
this is 30 milliseconds.

A sprite does not only have to consist of an
image, as in the example. You can specify a whole
array of images (hence QCanvasPixmapArray) and
switch between these during run time with
setFrame(). This makes it easy to implement running
men, rotating boulders, exploding rockets and
similar things.

You can find further information on QCanvas in
the reference documentation supplied with Qt or
online. One tutorial of special interest for games
programmers has appeared at zez.org. ■

Info

Qt source code: http://www.trolltech.com/products/download/freelicense/qtfree-dl.html
Source code for the examples: logo.png: Animated, wandering and rebounding Qt logos
Reference material on QCanvas: http://doc.trolltech.com/qcanvas.html
Tutorial for games programmers: http://zez.org/article/articleview/2/

■

065-qtprog.qxd 28.03.2001 8:48 Uhr Seite 67

