
After a broad overview and a little bit of theory, the
first part of the course shows how OpenGL
programs are constructed, using Hello World as an
example.

OpenGL was originally developed by SGI and in
ages long past was called IrisGL. The primary aim of
developing IrisGL was to develop a programmable
interface for the graphics workstations of SGI. This
programmable interface was initially intended to be
hardware-independent, future-proof and to meet
the special demands of 3D graphics programming.

It soon emerged that IrisGL is not only of
interest for SGI workstations, but can also help
other workstations to get up and running in terms
of graphics. The OpenGL Architectural Review
Board (ARB) was founded in 1992 by major
manufacturers of graphics workstations such as SGI,
Sun, Hewlett-Packard and others. The task of the
ARB is to guide the further development of OpenGL
and introduce new functionalities in later versions.
OpenGL has now become the commonest
hardware-independent interface for 3D
programming.

The latest version is OpenGL 1.2. There are
OpenGL implementations for Irix, Solaris, HP-UX,
Linux, Windows and a few other operating systems.
In the Linux world the OpenGL clone Mesa is the
most common one. The American Brian Paul

breathed life into Mesa, and the library has since
been further developed by him and many other
developers all over the world.

Principles

OpenGL is always in a defined state, which is set by
condition variables; this means that OpenGL is a
State Machine. An example of a condition variable
is the current colour with which the individual
primitives are rendered (drawn). These are set using
the command glColor3f(red, green, blue) and this
then applies for all drawn objects until a second
glColor3f(..) command changes the colour.

All objects under OpenGL must be composed
from 10 different primitives. The instruction set in
the library comprises some 200 commands, all
starting with gl. OpenGL does in fact contain all the
simple operations for programming interactive 3D
graphics, but it cannot do real 3D bodies such as
cylinders and dice, only points, lines and polygons.

All complex bodies have to be constructed by
the 3D developer out of simple primitives. To make
the work a bit simpler for the applications
developer, hard-working 3D experts have developed
some programming libraries, a few of which we
shall be introducing in the course of this series of
articles. The two most important expansions are

PROGRAMMING OPENGL

68 LINUX MAGAZINE 8 · 2001

OpenGL Course, Part 1

HELLO 3D
WORLD

THOMAS G E RUGE

Here we present the first in a series

covering an OpenGL programming

course. Using simple, easy-to-understand

examples, we will lead you into the

exciting and complex world of 3D

programming.

068-opengl.qxd 28.03.2001 9:01 Uhr Seite 68

PROGRAMMINGOPENGL

8 · 2001 LINUX MAGAZINE 69

3D transformations

The elementary transformations in 3D graphics
programming are translation, rotation and scaling of points
in 3D space. So that these operations are shown in a
standard format and can be programmed easily,
transformations take the general form: b = M • a. So as to
display not only rotations or scalings, but also translations
in this linear form, a homogenous co-ordinate xw is
inserted into the space of the transformations. In
mathematical jargon, we have embedded the affine space
R3 in the projective space P(R4) and can thereby display any
affine figure (transformation) through a matrix
multiplication.

The three transformations referred to above then look like
this:

Translations

We can displace objects in space at will with translations

Scalings
Scalings make objects bigger and smaller

Rotations about the origin
Rotations change the orientation of objects. If we want to
rotate the point a about an axis p by the angle a, the
associated transformation matrix R(p,a) in its commonest
form looks like this:

Rotations about the three axes of the co-ordinate grid by
the angle a:

Rotations about any axis can be assembled from rotations
about the co-ordinate axes:

Rotation about any point

The rotation matrices described above define rotations
about the origin, but often an object needs to be rotated
about a different point u. To do this, we link together
translations and rotation in such a way that the point about
which the rotation takes place serves as origin. This means
that we make a change to the co-ordinate system:

Figuratively speaking, we have first displaced the point a by
the vector -u then rotated it by a and finally pushed the
point back again.
In graphics programming the programmer needs such
assembled matrices over and over again, so that the 3D
objects appear where they belong. OpenGL relieves the
developer of a great deal of work in the creation and
treatment of transformation matrices.
After all the transformations we finally want to work
against with three-dimensional co-ordinates:
Where aw = 0, the point lies at infinity.

a

a

a

a

a

b

b

b

b

b

M

t t t t

t t t t

t t t t

t t t t

x

y

z

w

x

y

z

w

xx xy xz xw

yx yy yz yw

zx zy zz zw

wx wy wz ww

=



















=



















=



















b T t a

t

t

t

a

a

a

a t

a t

a t

x

y

z

x

y

z

x x

y y

z z

=)(=



















⋅



















=

+

+

+



















1 0 0

0 1 0

0 0 1

0 0 0 1 1 1

b = Sa =

s

s

s

a

a

a

s a

s a

s a

x

y

z

x

y

z

x x

y y

z z

0 0 0

0 0 0

0 0 0

0 0 0 1 1 1



















⋅



















=

⋅

⋅

⋅



















R p

r r r

r r r

r r r

xx xy xz

yx yy yz

zx zy zz

(,α) =



















0

0

0

0 0 0 1

R e(,x α
α α

α α
)

cos sin

sin cos
=

−



















1 0 0 0

0 0

0 0

0 0 0 1

R e(,y α

α α

α α
)

cos sin

sin cos
=

− 

















0 0

0 1 0 0

0 0

0 0 0 1

R p R e R e R e(, (, (, (,x y zα α α α))))= ⋅ ⋅

b T u R p T u a= ⋅ ⋅ ⋅−()) ()(,α 1

a

a a

a a

a a

x w

y w

z w

3 =

















/

/

/

R e(,z α

α α

α α
)

cos sin

sin cos
=

−



















0 0

0 0

0 0 1 0

0 0 0 1

068-opengl.qxd 28.03.2001 9:01 Uhr Seite 69

GLU (OpenGL Utility Library) and GLUT (OpenGL
Utility Toolkit).

GLU makes it easier to create projection
calculations and to construct complex surfaces,

using, among others, Nurbs (Non-uniform-rational
B-Splines). GLUT is an operating system-
independent tool for simpler handling of OpenGL
windows and provides the application developer
with routines to respond to user events from the
mouse or keyboard.

Anyone wanting to become a real 3D graphics
expert will have to overcome a few mathematical
obstacles. For a better understanding, some
knowledge of linear algebra is useful and terms such
as vectors or matrices should not be a complete and
utter mystery to the reader. The most important
terms that crop up time and time again in OpenGL
are set out in the 3D transformations boxout.
Anyone with a yen for higher mathematics can learn
more with the Open GL Programming Guide

Installing the OpenGL clone Mesa doesn’t take
much. In most distributions Mesa is also installed by
default. Those users who have previously had no
OpenGL/Mesa environment on their computers, or
want to use the latest version of Mesa can find the

How the output of
the program HelloOpenGL

ought to look

PROGRAMMING OPENGL

70 LINUX MAGAZINE 8 · 2001

Listing 1: HelloOpenGL.c
#include /stdio.h>
#include /stdlib.h>

#include /GL/glut.h>

void DrawScene(void)
{

//set background colour (dark red)
glClearColor (0.5, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);

// Set colour of pentagon, (blue)
glColor3f(0.0, 0.1, 1.0);

//Polygon progression of the pentagon
glBegin(GL_POLYGON);

glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.8, 0.0);
glVertex2f(0.5, -0.5);

glEnd();

//draw previous GL commands
glFlush();

}

int main(int argc, char *argv[])
{

// initialises GLUT
glutInit(argc, argv);

// initialise output window (Single Buffer, RBG colour model)
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

// set window position and size
glutInitWindowPosition (100, 100);
glutInitWindowSize (500, 500);

// create window
glutCreateWindow (argv[0]);

// Set callback function to draw GL object
glutDisplayFunc(DrawScene);

// Main loop
glutMainLoop();

return EXIT_SUCCESS;
}

068-opengl.qxd 28.03.2001 9:01 Uhr Seite 70

latest binary and source packets at the Mesa
homepage.

Hello OpenGL with the OpenGL
Utility Toolkit

The first program has not much to do with 3D
as yet, as OpenGL can in fact also draw two-
dimensional objects – and that’s enough for a start.
To simplify window management we are making
use of the OpenGL expansion GLUT. OpenGL puts
together all 2D and 3D objects from primitives and
in the first program example we are simply going to
draw an arrow in an OpenGL window.

The program (Listing: Hello-OpenGL.c) consists
of the functions DrawScene(..) and main(..).main (..)
contains only calls from GLUT and helps us to draw
the graphics, which are created in DrawScene(..), in
a window.

The first command glutInit(argc, argv) initialises
the GLUT library and takes over X-parameters such
as -display or -iconic. With
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) we
are agreeing that our OpenGL window uses only
one graphics buffer and uses RGB as the colour
model. Buffer is that area of memory in which
drawing takes place. GLUT_SINGLE tells the
function that we only want to use one buffer. The
memory that is visible on the monitor and the area
in which we are drawing are identical. This means
that the onlooker sees how the individual OpenGL
objects are drawn.

glutInitWindowPosition(100,100) sets the
OpenGL window to the position (x = 100, y = 100)
of the X-server. glutInitWindowSize(500,500) sets
the size of the OpenGL window. The window is
created by the command
glutCreateWindow(argv[0]), but is not yet visible. As
the result of the argument argv[0] the window
receives as name the program invocation.

The instruction glutDisplayFunc (DrawScene)
ensures that every time the OpenGL window is to
be redrawn, the callback function DrawScene() is
called up. Events which make such a redrawing
necessary are for example the displacement,
enlargement or reduction in size of the window and
the explicit call up of the function
glutPostRedisplay().

The main loop is invoked using glutMainLoop().
Within this loop the OpenGL program responds to
all possible user events and intercepts mouse and
keyboard events.

Thanks to the seven GLUT commands, we no
longer need to bother about making any changes
whatsoever to our window or about actions by the
user. GLUT takes over these tasks. The programmer
only has to write the callback functions, so that their
program responds as required to external events. We
can thus now concentrate completely on the actual
OpenGL programming which occurs in DrawScene().

The command glClearColor(0.5, 0.0, 0.0, 0.0) in

DrawScene() specifies that the graphics buffer is
cleared with a dark red.
glClear(GL_COLOR_BUFFER_BIT) performs the
clearing of the graphics buffer. The next command
glColor3f(0.0, 0.1, 1.0) makes sure that henceforth
all subsequent objects are coloured blue. The
definition of the arrow starts with
glBegin(GL_POLYGON). GL_POLYGON firstly
specifies that the following co-ordinates are to be
interpreted as a closed polygon progression.

The following glVertex2f(x, y) commands define
the position of the corners of the polygon.
glVertex2f defines the arrow in only two
dimensions, and in order to describe the object with
three-dimensional co-ordinates, glVertex2f(x, y)
would just have to be replaced by glVertex3f (x, y
,z); glEnd() ends the definition of the arrow.

With glFlush we ensure that all previous
OpenGL commands are executed, in our example
the buffer is first coloured in red, then the arrow is
drawn. After the program stops, it is time for the
compilation:

gcc -I . -c HelloOpenGL.c

gcc -o HelloOpenGL HelloOpenGL.o \
-lGL -lglut -lGLU

When executing ./HelloOpenGL a window with
a blue arrow on a red background should be visible
(see Figure).

The first example is, nothing particularly
spectacular and nor is a 3D scene visible, but it
already includes all the important components of an
OpenGL program. GLUT has firstly defined which
characteristics the OpenGL window possesses and
how it responds to events. We have then defined
the appearance of the scene within DrawScene().

A full 3D pot

The sample program Teapot.c (Listing 2), with the
aid of the GLU library, paints a three-dimensional
teapot and responds to events from mouse and
keyboard. The program consists, apart from the

AD

068-opengl.qxd 28.03.2001 9:01 Uhr Seite 71

main function main(..) and the initialisation function
myinit(), of the callback functions mouse(..),
motion(..), keyb(..), recalcModelPos() and
DrawScene(). In comparison with the first sample
program main() uses three new callback functions
and evaluates the depth information.

glutInitDisplayMode(GLUT_DOUBLE |
GLUT_RGB | GLUT_DEPTH) initialises the OpenGL-
window with foreground and background buffer
and a depth buffer. The foreground buffer is shown
in the OpenGL window. Drawing is done in the
invisible background buffer. When rendering is

PROGRAMMING OPENGL

72 LINUX MAGAZINE 8 · 2001

#include <stdio.h>
#include <stdlib.h>

#include <GL/glut.h>

// Condition variable
// mouse movement
int mousemotion;
int mousex, mousey;

// Initialise model orientation
GLfloat xangle = 4; /* for rotation */
GLfloat yangle = 120;
//Model position
GLfloat posx = 0, posy = 0, posz = 0;

//Callback Function: Reaction of mouse clicks
void mouse(int button, int state, int x, int y)
{
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) {
mousemotion = 1;
mousex = x;
mousey = y;

}
if (button == GLUT_LEFT_BUTTON && state == GLUT_UP) {
mousemotion = 0;

}
}

//Callback Function: Reaction of mouse movement
void motion(int x, int y)
{
if (mousemotion) {
xangle = xangle - (y - mousey);
yangle = yangle - (x - mousex);
mousex = x;
mousey = y;

// Draw a new display
glutPostRedisplay();

}
}

//Callback Function: Reaction of keypress
void keyb(unsigned char keyPressed, int x, int y)
{

switch(keyPressed) {

case ‘l’:
// Light activation
glEnable(GL_LIGHTING);
glutPostRedisplay();
break;

case ‘o’:
// Light deactivation
glDisable(GL_LIGHTING);
glutPostRedisplay();
break;

}
}
//new Model position calculation
void recalcModelPos(void)

{
glLoadIdentity();
glTranslatef(posx, posy, posz);
glRotatef(xangle, 1.0, 0.0, 0.0);
glRotatef(yangle, 0.0, 1.0, 0.0);

}

void DrawScene(void)
{

// Delete buffers
glClearColor (0.5, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Calculation of new model coordinates
recalcModelPos();

// Teapot painting
glutSolidTeapot(0.6);

// Foreground and background buffer change
glutSwapBuffers();

}

//Initialising function
void myinit()
{

GLfloat light_position[] = {0.0, 0.0, -1.0, 1.0 };

//First GL-Light fall

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glEnable(GL_LIGHT0);

//Z-buffer activation
glDepthFunc(GL_LEQUAL);
glEnable(GL_DEPTH_TEST);

}

int main(int argc, char *argv[])
{

//GLUT initialisation window
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);

// Initialisation
myinit();

//Callbacks set: Reaction of mouse clicks,
movements and keyboard activity
glutMouseFunc(mouse);
glutMotionFunc(motion);
glutKeyboardFunc(keyb);

//Callback for drawing the GL-Function
glutDisplayFunc(DrawScene);

glutMainLoop();

return EXIT_SUCCESS;
}

Listing 2:Teapot.c

068-opengl.qxd 28.03.2001 9:01 Uhr Seite 72

complete, we swap foreground and background
buffers, so the image just drawn can be seen.

The depth or z-buffer ensures that areas
covered by other areas cannot be seen. In the z-
buffer each pixel in the OpenGL window is assigned
a z-value. If a new pixel is to be set during
rendering, a check is made as to whether its z-value
is greater than that of a pixel that has already been
set. If so, the new pixel comes before the old one
and can be drawn, otherwise not.

If all parameters have been set and if the
OpenGL window has been created, an initialisation
function myinit() is called up. This function was
introduced for better legibility of the program.

The next step is to set the diverse callback
functions. So glutMouseFunc(mouse) sets the
function to be called up when pressing or releasing
a mouse button. glutMotionFunc(motion) sets the
callback function for mouse movements. So that
the program also responds to keyboard events, we
also call up glutKeyboardFunc(keyb). The rest of
main() is equivalent to HelloOpenGL.

Callback functions in detail

In void mouse(int button, int state, int x, int y) the
position of the mouse in the OpenGL window is
queried, buffered in x and y and registers whether the
left mouse button was pressed. The function makes a
note with mousemotion of the condition of the left
mouse button and takes it into account later in the
function motion(int x, int y). The function motion(..)
calculates, from the current mouse position (x,y) and
the mouse position at the time when the left mouse
button has been pressed (mousex, mousey), the angle
about which the object should be rotated (xangle,
yangle). The call up of glutPostRedisplay() ensures that
the scene is actually redrawn and by calling up
DrawScene() the new position of the teapot is
calculated in recalcModelPos().

The callback function keyb(unsigned char
keyPressed, int x, int y) responds to the two letters l
and o. When the user enters l the light calculation is
activated with glEnable(GL_LIGHTING), o
deactivates the light again with the aid of
glDisable(GL_LIGHTING). These three callback
functions cover all events that the program has to
process.

The next function recalcModelPos() is called up
by DrawScene() to calculate the new position of the
teapot. Generally every transformation (rotation,
displacement, scaling) can be described using four-
dimensional matrix-vector multiplications. This is
explained in more detail in the 3D transformations
boxout. OpenGL uses the matrix stack for such
multiplications.

In recalcModelPos() with glLoadIdentity() the
identity matrix is loaded onto the stack. glTranslatef
(posx, posy, posz) multiplies this matrix by a matrix
which displaces an object by the co-ordinates posx,
posy, posz. But since they all contain 0 this step

could also be omitted. These displacements will also
be discussed later on in this series of articles.

With glRotatef(xangle, 1.0, 0.0, 0.0) and
glRotatef(yangle, 0.0, 1.0, 0.0) we multiply the
matrix again with rotations about the x and the y-
axis. This matrix is then used later in DrawScene(). In
this function, the buffer must first be cleared, as
well as the z-buffer, so as not to receive any
incorrect depth information. Next, with
recalcModelPos() the matrix is calculated with the
new model co-ordinates. This matrix is then to be
multiplied by all points of the teapot.

The teapot is created, as the result of the
instruction glutSolidTeapot(0.6), with a size 0.6.
There is nothing behind this command but the
placing of polygons, similar to the way we called up
the arrow in the first program with glVertex2f.
GLUT has more fixed, pre-defined objects. If you’d
like to experiment with other objects, try out
glutWireTorus(..) or glutSolidDodecahedron(..).

The teapot was drawn in the invisible
background buffer and appears with the command
glutSwapBuffers() in the foreground. In the
initialisation function myinit() we create, using
glLightfv(GL_ LIGHT0, GL_POSITION,
light_position), a light at the position (0, 0, -1) and
switch it on using glEnable(GL_ LIGHT0).

The last two commands set the z-buffer mode.
glDepthFunc(GL_LEQUAL) draws only pixels whose
z-value is less than that of the pixel already drawn.
glEnable(GL_DEPTH_TEST) activates the z-buffer
calculation. Finally, the compilation:

gcc -I . -c Teapot.c
gcc -o Teapot Teapot.o -lGL \
-lGL -lglut -lGLU

If everything fits, when you call up teapot, as in
the picture, a white teapot should appear, which
responds to the input of the letters l and o and to
mouse actions.

What’s next?

That’s the end of our journey into the realms of
OpenGL and GLUT. We have looked at the options
for responses to the various inputs by the user and
conjuring and moving polygons on the screen. The
next installment will be about the primitives of
OpenGL, how the world can become a bit more
colourful and how edges can be smoothed with the
aid of normal vectors. ■

PROGRAMMINGOPENGL

8 · 2001 LINUX MAGAZINE 73

The author
Thomas G E Ruge has been a
converted Linux fan since
Kernel 0.98 and is interested in
everything to do with 3D or
virtual reality. He has been
driving forward the technical
construction of the Virtual
Reality Laboratory in the
research department of
Siemens AG for nearly six years
and is involved in the
possibilities of high-end VR
with Linux clusters.

Info

Woo, Neider, Davis, Shreiner: Open GL Programming Guide 3rd ed., Verlag
Addison Wesley Longman Inc.,1999
J. Encarnacao : Graphische DV 1, Oldenbourg Verlag GmbH
OpenGL homepage: http://www.opengl.org
Mesa homepage: http://www.mesa3d.org

■

068-opengl.qxd 28.03.2001 9:01 Uhr Seite 73

