
PROGRAMMING SCHEME

74 LINUX MAGAZINE 8 · 2001

Thinking about scripting, the ”usual

suspects” like Bash, Korn Shell,

Python, etc. will probably come to

mind. However, scripting is also

possible with Scheme. The focus of

this article is therefore on shell

programming, as well as

”programming for the Internet”.

Shell Scripting with Scheme

A CHANGE
ON THE

BRIDGE
FRIEDRICH DOMINICUS

The Scheme shell (Scsh; http://www-
swiss.ai.mit.edu/ftpdir/scsh/) was designed
specifically for Unix scripting; in its current form it is
not nearly as suitable for interactive use as for
instance the Bash or Z shell. There are other
implementations in Lisp languages, die-hard Emacs
fans could check out Eshell, a shell for Emacs in
Emacs Lisp
(http://www.emacs.org/~johnw/eshell.tar.gz).

Debian installation users have access to a DEB
package of the Scheme shell, users of RPM-based
distributions have to go via the following sources
ftp://ftp-swiss.ai.mit.edu/pub/su/scsh/scsh.tar.gz.
Other Scheme dialects can also be used for
scripting, however, the Scsh offers the integration
into the Unix tools. So why should you resort to

Scheme for shell programming? The author of the
Scheme shell, Olin Shivers, has the following to say
on the subject:

”Unix shells are real programming languages.
They have variables [...]. But they are terrible
programming languages. The data structures
typically consist only of integers and vectors of
strings. The facilities for procedural abstraction are
minimal to non-existent. The lexical and syntactic
structures are multi-phased, unprincipled and
baroque.”

This fairly harsh criticism is aimed mainly at the
programming language aspect. Also ignored are the
many functions which make working on the
command line so agreeable. This is the area in
which the Scsh has great weaknesses. The length of

074-schemeNEW.qxd 28.03.2001 10:59 Uhr Seite 74

the Unix FAQ indicates that shell programming is
not an easy subject.

Renaming a number of files

The question regarding the renaming of a number
of files can also be found under 2.6 of the Unix
FAQ, so it isn’t a trivial question, otherwise it
certainly wouldn’t have ended up there. Here is a
possibility for a Bourne shell:

function rename_1 (){
from=$1
to=$2
mv $from $(echo $to |\

tr `[A-Z]’ `[a-z]’).html
}
for f in *.HTM; do
base=`basename $f .HTM`
rename_1 $f $base

done

Let’s apply this to the following files: T1.HTM,
T2.HTM, ”with blank.HTM” and T3.HTM. The
resulting output is: mv: when moving several files
the last argument must be a directory. Well, this
error message is not exactly helpful. Let’s have a
look at what might have gone wrong. Using ls, we
can see that the renaming has worked for all files
apart from the one with blanks. The problem is
therefore one of blank spaces in filenames, and we
can forget about the reference to a directory. So
let’s try it a different way:

function rename_2 (){
from=$1;
to=$2
mv $from ”$(echo $to |\

tr `[A-Z]’ `[a-z]’).html”
}

The following files exist: t1.html, t2.html, with
blank.html and t3.html. The second method seems
to work. However, to use umlauts or other strange
characters in file names you need to know a lot
about quoting, process substitution and special
characters. Now here’s the whole thing in the
Scheme shell:

#!/usr/local/bin/scsh \
-l ./stringhax.scm -s
!#
(define (rename-them)
(let ((file-list (glob ”*.HTM”)))
(for-each
(lambda(x) (rename-file x

(replace-extension
(downcase-string x) ”.html”)))

file-list)))
(rename-them)

Applied to the same files we get the expected result
directly. Now let’s have a look at the structure of a
Scsh script: as in every script, the first line specifies
what sort of program is to process this script. The
following lines are command line arguments for the

Scsh, as listed in chapter 2 of the Scsh reference
manual.

In the example we are first loading a file
(stringhax.scm) that contains some extensions for
handling character strings; the only thing required
here is the procedure downcase-string. -s limits the
extended command line and must always be the
last option before !#.

We are going to define the procedure rename-
them. glob pattern generates a list, whose elements
correspond to pattern. Subsequently each individual
file in the list is renamed in a loop. This requires
several procedures: one to rename the files, one to
replace the extension and the third to change the
file names to lower case. The call to the newly
defined procedure completes the script.

Scheme shell characteristics

Perhaps this example has managed to convince you
that shell programming can be simplified by using a

PROGRAMMINGSCHEME

8 · 2001 LINUX MAGAZINE 75

Listing 1: Exception handling in the Scsh
(define (error-handling-test)
(let ((dir "dir"))
(create-directory "dir")
(with-errno-handler
((e1 d1)
((errno/exist)
(format #t "errno-msg = ~A~%

syscall = ~A~%data = ~A~%~%
Directory exists~%"

(nth d1 0) (nth d1 1) (nth d1 2)))
(else (error "Do not know what to do now, giving up\n")))
(create-directory dir))
(with-errno-handler
((e2 d2)
((errno/isdir)
(display "Oops, was a directory

so running delete-directory instead\n")
(delete-directory dir)))

(delete-file dir))))

Listing 2: Awk, the Scheme way
#!/usr/local/bin/scsh -s
!#
;;; Add the numbers of kb of free and used disk space for all the volumes
;;; reported by df(1)
(define (df-free+used)
(let ((df-read (field-reader))) ;df 1
(exec-epf
(| (df) ;df 2

(begin
(read-line) ; skip first line of df ;df 3
(awk (df-read) (line fields) ;df 4

((used-kb 0) (free-kb 0)) ;df 5
(#t ;df 6
(values (+ used-kb (string->number (nth fields 2)))

(+ free-kb (string->number (nth fields 3)))))
(after
(values ̀ (`used-mb ,(/ used-kb 1024.0)) ;df 7

`(`free-mb ,(/ free-kb 1024.0))))))))))
(receive
(used-list free-list)
(df-free+used) ; df 8
(format #t ” ~A MB are being used and ~A MB are still free.~%”

(cadr used-list)
(cadr free-list)))

074-schemeNEW.qxd 28.03.2001 10:59 Uhr Seite 75

fully-fledged programming language. For a link to
the underlying system the Scsh offers:
• mechanisms for integrating data from Unix

programs and the Shell
• a POSIX-API converted to Scsh.

Process control

Normally, every program started under Unix
becomes a separate process. Shell programs often
consist of a combination of several programs,
linked, for instance, by pipes. The Scsh therefore
requires channels for linking the programs. Here is a
simple example:

(define (example-1-copy from to)
(run (cat ,@from)

(> ,to)))

The procedure is expecting a list of files to be
concatenated with cat and written to to. run,
together with other process control elements, is
implicitly backquoted. For example, a file t1.txt can
be accessed in the three following ways:

* (run (cat "t1.txt"))
* (run (cat t1.txt))
* (define file "t1.txt") (run (cat ,file))

Capitalisation is important in the Scsh (unlike
”standard Scheme”), as Unices differentiate
between upper and lower case. This extension
seems appropriate in order for the Scsh to adapt to
that requirement. A mechanism such as run is not
sufficient for integration, which is why there are
additional procedures available for process control,

such as procedures for diverting input/output, job
control and pipes. Here is an example of a pipe with
the Scsh:

(run (|(cat foo bar)
(grep -n "\\<foo\\>"))

(> foo_lines))

Exchange of data between
service programs and Scheme
If you want to access all Unix programs you need
the facility of making service program data available
to the Scheme shell. This is achieved using the
run/xxx procedures. If, for instance, you require a list
of the files in the current directory, you enter
(run/strings (ls)). The result is a list of character
strings with the names of the files which can be
processed by all Scheme programming elements.

Other run/xxx commands are used to write to
ports or temporary files, or to convert the output
into a single character string. For instance,
(run/string (cat foo bar)) gives you a character string
consisting of all lines of the two files.

An interesting example for Linux is the
command run/port+proc, which return additional
information on the split process, such as output
status, current status, and others.

(define (run/port+proc-test)
(receive (port process) (run/port+proc (ls -l))

(let ((out (port->string port))
(exit-status (wait process)))

(display "the pid of the process was ")
(display (proc:pid process))
(display ", exit status = ")
(display exit-status)
(newline)

out)))

The Scsh uses the form receive to bind several
return values. The binding parameters are contained
in the first list (here port and process), afterwards
the procedure which will return these values is
called (run/port+proc).

In our example the output from ls -l is written to
the port, and, using port->string, this output is
converted to a character string, which constitutes
the return value of this procedure. The output
status of the program started with run/port+proc is
recorded using exit-status. proc:pid accesses the
element pid in the proc structure, so the Scsh
handles this differently from DrScheme.

Exceptions

Basically the Scheme shell wraps all POSIX system
calls in Scheme syntax. Should error occur,
exceptions are raised which can be processed (see
listing 1).

Exceptions are processed as follows: The rump
of the exception is executed first, such as, the
procedure create-directory in the first error handling
routine, and delete-file in the second.

PROGRAMMING SCHEME

76 LINUX MAGAZINE 8 · 2001

Listing 3: Creating a colourful table
(load (string-append laml-dir "laml.scm"))
(laml-style "simple-html4.0-loose")
(generic-page-1
"A page with a very colourful table"
(con-par

"This pages shows some elements from the
HTML 4.0 convenience library"
(em "Emphasis is not a problem"

(b "bold") "also works.")

"Here is another colourful table, keep your eyes open ;-)"
(table-1
2 ; border
(list 70 100 100 100) ; four columns
(list (make-color 106 90 205)

(make-color 0 255 255)
(make-color 127 255 212)
(make-color 238 121 159)) ; "wonderful" colours;

(list
(list "Here" "a" "table" "with")
(list "the" "most" "tasteful" "colours" "a")
(list "work" "of" "enduring" "value")) ; text in table
"middle")

(b "Here ends this `nice’ page, but not without")
(con "referring to another `masterpiece’"

(a-tag "simple.html" "simple"))) ; a link
;; colours for this page
(make-color 255 255 191) (make-color 205 105 201) blue red
)

(end-laml)

074-schemeNEW.qxd 28.03.2001 10:59 Uhr Seite 76

Should an exception occur, the first parameter of
the error handling form (e1) is bound to the value of
errno, the second parameter (e2) to a list. The latter
consist of an error message which equates to the
output perror errno, the failed system procedure
(this parameter can be used to call the failed
method again) as well as other information which
differs according to the system procedure involved.

Afterwards the individual error handling cases are
examined in turn, with the return value of the executed
branch becoming the value of the entire error handling.

In our example we skip the creation of the directory
and return an error message where a directory of the
same name already exists. If it is not possible to delete
the directory in the second part, an unsuitable
procedure (delete-file) is called, which will inevitably
generate an exception error. To remedy this the correct
delete procedure (delete-directory) is then called.

System calls and additional
procedures
The Scsh offers a great deals of other procedures for
a range of different areas, which can only be
mentioned briefly here:
• input/output (Scheme standard procedures and

extensions)
• file/directory processing and information
• globbing
• other process control elements
• Signals and interruptions
• time-handling procedures
• environment variables
• terminal control
• regular expressions
• network programming
• bit manipulations
Especially interesting is the conversion of so-called
”little” languages into Scheme syntax, for example
the awk macro of the Scsh. In our example (see
listing 2) the total used and free disk space on the
hard disk is calculated. For individual partitions this
could be done using df, however, there is no service
program that will show you used and free disk
space for an entire hard disk.
The returning of Scheme expressions (; df 7) follows
a recommendation from Olin Shivers. He remarked
that this makes it easier to process data in other
procedures, as you can utilise the read functionality.

Let’s examine the program a little more closely:
the output of df is subject to a consistent format
(file system ”Total Size ” ”Bytes Used” ”Bytes Free”
..\n”). These are several fields which are separated
by spaces. In the Scheme shell the reading in of lines
has been separated from the processing of the
current line. The reading in is performed by what
are called ”field readers” (; df 1). The output from
df is ”piped” to Scheme (; df 2).

Since the first line of the df output contains text
which is irrelevant for the capacity calculations, it is
simply ignored (; df 3).

The Scsh ”field reader” returns two values: the
complete line as well as a list of individual elements.
The lines are split into words using specific field
separators. Where no particular characters are
specified, white spaces are regarded as separators.
We define two variables (; df 5), which will contain
the total of used and free kilobyte. In order to
understand the rest of awk you have to imagine the
way in which the original awk works. An awk script
is surrounded by a loop that reads in data line by
line (or even several lines at a time, depending on
the field separator). awk scripts are also based on an
implicit case differentiation, in which the current
line is compared with regular expressions.

In the Scsh equivalent of awk additional
elements can be used: Boolean values, regular
expressions and Scheme expressions. In our case we
are interested in all lines, as each line lists the used
and free bytes of the corresponding file system.
Therefore we are simply using #t (; df 6) for testing,
as that applies to each individual line.

The local variables are updated for each line
that is read in. The third element of the list is added
to used-kb (it is almost always equivalent to the
used kilobytes in the file system that is currently
being examined). The fourth list element and free-
kb are dealt with in a similar way. Finally the
kilobytes are converted to megabytes (; df 7) and
two return values in the form of (symbol ,(calculated
Mbytes)) are returned.

The call to the newly defined procedure (; df 8)
forms the conclusion of this script. The output on
my computer is:

3976.94 MB are being used and 2885.82 MB arU
e still free,

so there is still a bit of space for a few more articles ;-).
Since the interaction of the procedures for

reading in the data and processing by the awk macro
is confusing at first glance I would recommend
reading chapter 8 of the Scsh reference manual,
where this interaction is documented in detail.

Network programming

The Scsh offers a few procedures for this as well.
These can be divided into ”basic procedures” and
”usability procedures” based on the basic ones.
Using the latter, it is pretty easy to create a Scheme
server (see box Scheme server and client)

It really is a Scheme server in only 23 lines of
program.

Scheme and the Internet

Functional or declarative languages like Scheme are
tailor-made for use in today’s Internet services. You
have seen the basic elements in the previous
example, however, based on this, Scheme
enthusiasts have implemented a number of
additional services. For example a HTTP server,

PROGRAMMINGSCHEME

8 · 2001 LINUX MAGAZINE 77

074-schemeNEW.qxd 28.03.2001 10:59 Uhr Seite 77

procedures for mail handling, modules for HTML-
formatted output and CGI-programming. There are
further service programs in the DrScheme net
collection for SMTP, NNTP, DNS, POP3 and IMAP. So
even for those programs you do not have to resort
to other scripting languages.

Scheme as a markup language

The most prominent example of a markup language
at the moment is HTML. The term ”language” is
misleading, however, as HTML is not a
programming language but a tool for describing

PROGRAMMING SCHEME

78 LINUX MAGAZINE 8 · 2001

Scheme server and client

Client

(define (send-to-server form)
(let* ((sock (socket-connect

protocol-family/internet
socket-type/stream
"localhost" test-port))

(op (socket:outport sock)))
(format #t "I’ll send ~A~%" form)
(cond
((number? form)
(write (number->string form) op))
(else
(write form op)))

(force-output op)
;(sleep 1)a
(let ((result (read (socket:inport sock))))
(format #t "I got ~A from the Server~%" result)
(force-output (current-output-port)))

(close-socket sock)))

Server

(define test-port 1111) ;sk 1
(define (scheme-server)
(let* ((log-file-name "./scheme-server.log") ;sk2

(log-file (open-output-file
log-file-name
(bitwise-ior open/append open/create)))) ;sk2

(bind-listen-accept-loop
protocol-family/internet
(lambda (sock addr)
(let* ((op (socket:outport sock))

(input (read (socket:inport sock))))
(format log-file "Got: ~A~%" input) ;sk 2
(force-output log-file)
(let ((output (eval input (interaction-environment))))
(format log-file "Wrote: ~A~%" output) ;sk 2
(force-output log-file)
(cond
((number? output)
(write (number->string output) op))
(else
(write output op)))

(force-output op))))
test-port)))

The server in this example waits for requests at port 1111 (; sk1). No error handling is
provided, however, the entire data exchange is logged (; sk2). The procedure bind-listen-
accept-loop is a wrapper around basic procedures such as create-socket, connect-socket,
bind-socket and others. Extensions like receive-message and send-message are available for
the output to sockets; or you could simply use standard Scheme procedures, like read and
write in our case.
Some application examples:

(send-to-server "foo") -> I got foo from the Server
(sent-to-server ̀ (+ 1 2)) -> I got 3 from the Server
(send-to-server ̀ (map (lambda (x) (+ 1 x)) ̀ (1 2 3)))
-> I got (2 3 4) from the Server

074-schemeNEW.qxd 28.03.2001 10:59 Uhr Seite 78

pages. For more advanced elements (such as loops
and case differentiation) you will have to fall back
on a real programming language.

How about adding markup elements to a
programming language? That’s exactly what Kurt
Normark thought, and so he developed LAML (Lisp
Abstracted Markup Language). LAML is divided into
separate layers. The lowest one contains only
”wrappers” around the different HTML tags. You
can read about how the layers are structured in the
comprehensive documentation of LAML. Here a first
example of LAML:

LAML files are translated to HTML using a
suitable Scheme implementation, while MzScheme
is currently the LAML development Scheme. How
you translate the files depends on the environment
in which you are working. There is a laml-mode for
the (X)Emacs, with which you can start the
translation of LAML files directly from the editor.
Alternatively you can call the LAML script (this is a
MzScheme script) or load the appropriate files into a
Scheme and call the LAML procedure (laml
”file.laml”). Another example for the use of LAML
can be found in listing 3.

I’m sure you will agree with me that the colour
selection in the table is easy on the eye.

The LAML sources contain a number of
examples and good documentation. Some of the
examples are pretty clever templates, amongst
other things a slide show, documentation tools for
Scheme, a calendar and schedules.

Finally, please have a look at the following page,
which is derived from a lecture template.

Summary

This part has introduced Scheme as a ”scripting”
and markup language. The examples show how
flexibly Scheme can be used. Learning Scheme
provides you with a tool that allows you to
replace a number of other ones. The seamless
conversion of the various elements is certainly
another advantage of Scheme. You are always

able to fall back on the full functionality of a
programming language, there are practically no
limitations such as you can encounter with other
programs. In my opinion these are reasons for
learning Scheme.

Outlook

In the next part about Scheme the focus is once
again on the Internet. We will also be using Scheme
for CGI programming and in connection with Java.
There are Schemes that have been developed
specially for the interaction with Java and which
allow you seamless access to Java classes. As always
I would be happy about any comments and
suggestions, my email address is: frido@q-software-
solutions.com ■

Info

”A Scheme Shell”, Olin Shivers, SCSH Paper (part of the sources)
”Scsh Reference Manual”, Olin Shivers (also part of the sources)
Unix FAQ: ftp://rtfm.mit.edu/pub/usenet-by-hierarchy/comp/unix/answers/unix-
faq/
SCSH Home Page: http://www-swiss.ai.mit.edu/ftpdir/scsh/
LAML Home Page: http://www.cs.auc.dk/~normark/laml/

■

PROGRAMMINGSCHEME

8 · 2001 LINUX MAGAZINE 79

First steps in LAML

(load (string-append laml-dir "laml.scm"))

(laml-style "simple")

(generic-page-1

"Greetings from LAML"

"Especially for you one of the most impressive masterpieces

of LAMLic programming ;-)")

(end-laml)

[left]
Figure 1:
A table generated
by LAML

[right]
Figure 2:
Lecture template

074-schemeNEW.qxd 28.03.2001 10:59 Uhr Seite 79

