
PROGRAMMING GNOME

80 LINUX MAGAZINE 8 · 2001

As always, everything – and this is a promise – will get
better and nicer. This time, what’s involved is the
possibility of storing, managing and querying
configuration data for programs at a single, central
location – at the start of a program for instance.
Gnome developers have begun to bring a mechanism
for this to the start line, which they have named GConf.

GConf is to make a proper entrance in Version
2.0 of Gnome, but is already available in a packet in
the unstable tree of the source code. A few new
programs (Nautilus and Evolution among them)
already demand GConf for their compilation. The
library will not remain limited to Gnome however,
but will ultimately also be able to be used for pure
Gtk+ and X-applications, KDE programs and even
from the command line.

According to Havoc Pennington, Gnome is at
the stage of Windows 3.x in terms of the
configuration of applications, because each
program stores its own settings in separate files.

The registration database under Win9x may be a
shrewd step, but it does have diverse restrictions:

According to the article, GConf wants to use a
two-rail system to provide both a library and an
architecture, which is to be designed as follows.

The concept

In theory GConf ought to offer a whole heap of
advantages, once it is finished and refined. And so it
does: We are talking about free software in the
initial stages with considerable claims to what will
eventually come about.

This begins with the independence of the back
end, in which the actual data is to be stored. The
current implementation stores everything in XML
files, which are best suited to hierarchical
organisations, if only files are involved.

But a binary format should also be possible as in
the registry, and anyone who wants to get really stuck
in can also control access via LDAP or even any SQL
database of their choice. The idea behind this is that
the administrator of a network can simply seek out
whatever suits their needs in terms of infrastructure.

Data is stored in key/value pairs, similarly to the
method used in the registry. The individual keys should
each be given their own field for documentation,
which is then shown by means of an application with
which the values can be changed. In addition to this,
other information should be stored, such as when the
key was last altered. It is not apparent, from the
documentation so far available, whether there might
be a mechanism provided which could prevent or
privilege the editing of certain keys.

There is also going to be a data notification
service. In an age of components, when every

Which Windows user does not know the beloved registry, in which the

system and diverse programs store configuration data – or again, maybe

not, or only partly. In any case, this application is very easy to use with a

mouse. It can be made even simpler.

Model – View – Controller (MVC)

This three-stage concept consists of a model, one or more views keyed to
this model, and finally one or more controllers. These components perform
the following tasks:
• In one model, the structure of the data is conceived. For GConf that

means, firstly, designing the entire database, and secondly, giving some
detailed thought as to the keys which are to be included.

• A view is a specific way of looking at data. This view can correspond to
the model, in that all data is simply made accessible, or (and this would
usually be the case) a certain section is shown. Whenever the model
changes, the views also have to be adapted.

• Finally, data can be changed from outside using a controller.

Database register

CLASS
REGISTRATION

THORSTEN FISCHER

080-gnomeprogNEW.qxd 28.03.2001 18:23 Uhr Seite 80

PROGRAMMING GNOME

8 · 2001 LINUX MAGAZINE 81

program can communicate with every other
program, it makes sense to propagate changes in
the network so that all applications for which it is
desirable are reconfigured accordingly.

This concept is also of interest because this
method can be used to reconfigure running
programs. For example, with a setting which
stipulates that all toolbars should no longer display
icons, and ensures that this change immediately
takes effect in all programs. I do not know,
however, whether I am the only person for whom
this sounds like an extremely interesting way to
upset a whole network of computers.

Each key has, as under Windows, an
unequivocal name. To show the hierarchy, a system
is used which is reminiscent of the file system under
Unix: a key could for example be called
/programs/editor/window/font. The values are
tagged, so are defined in advance, such as for
example string, integer or by another data type.

More than just a daemon

To be able to use GConf, a daemon named Gconfd
must be running. There should always be exactly
one daemon per user, which can communicate via
CORBA with applications.

A high level of abstraction, which comes into
play, for example, with some widgets in the Gnome
Application Library, bears the name MVC. Its
concept is explained in more detail in the Model –
View – Controller boxout.

There are several different types of data with which
one can fiddle around in Gconf: GConfEngine, is used
to address a configuration database, in most cases this
involves connection to a running Gconfd daemon.
Then there are GConfValue, a structure which encases
the tagged values from a key/value pair, and
GConfClient, a client which can communicate with a
GConfEngine, plus various tasty titbits such as caching
and finally GConfError, a structure for handling errors.

Listing 1: The client
1:
2: #include <gconf/gconf-client.h>
3: #include <gtk/gtk.h>
4:
5: void callback (GtkWidget* entry, gpointer user_data)
6: {
7: GConfClient *gclient;
8: gchar *str;
9:
10: client = GCONF_CLIENT (user_data);
11:
12: str = gtk_editable_get_chars (GTK_EDITABLE (entry), 0, -1);
13:
14: gconf_client_set_string (client, "/extra/uk/thefrog/linuxmagazine/gconf", str, NULL);
15:
16: g_free(str);
17: }
18:
19: int main(int argc, char *argv [])
20: {
21: GtkWidget *window;
22: GtkWidget *entry;
23: GConfClient *gclient;
24:
25: gtk_init (&argc, &argv);
26: gconf_init (argc, argv, NULL);
27:
28: window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
29: entry = gtk_entry_new ();
30:
31: gtk_container_add (GTK_CONTAINER (window), entry);
32:
33: gclient = gconf_client_new ();
34:
35: gconf_client_add_dir (gclient, "/extra/uk/thefrog/linuxmagazine/gconf", GCONF_CLIENT_PRU
ELOAD_NONE, NULL);
36:
37: gtk_signal_connect (GTK_OBJECT (entry), "activate", GTK_SIGNAL_FUNC (calU
lback), gclient);
38:
39: gtk_widget_show_all (window);
40:
41: gtk_main();
42:
43: return 0;
44: }

080-gnomeprogNEW.qxd 28.03.2001 18:23 Uhr Seite 81

PROGRAMMING GNOME

82 LINUX MAGAZINE 8 · 2001

Example

Now it’s time for a little example. The two listings, 1
and 2, contain a client and a controller
demonstrating the function of GConf. GConf does
have to be installed for this, either by doing it
explicitly as described briefly in the following

Installation boxout, or by having installed the
Ximian desktop.

GConf has to be initialised like Gtk+. This then
creates a new client, which is transferred via the
connection with a signal to the callback function. If one
now types some text into the input box and finishes
with the Return key, the content of the box is read out

Listing 2: The controller
1: #include <gconf/gconf-client.h>
2: #include <gtk/gtk.h>
3:
4: void callback (GConfClient* client, guint cnxn_id, const gchar* key, GConfValue* value, gboU
olean is_default, gpointer user_data)
5: {
6: GtkWidget *label;
7:
8: label = GTK_WIDGET (user_data);
9:
10: if (value == NULL)
11: {
12: gtk_label_set(GTK_LABEL(label), " leer ");
13: } else {
14: if (value->type == GCONF_VALUE_STRING)
15: {
16: gtk_label_set (GTK_LABEL (label), gconf_value_string(value));
17: } else {
18: gtk_label_set (GTK_LABEL (label), " wrong type! ");
19: }
20: }
21: }
22:
23: int main(int argc, char *argv [])
24: {
25: GtkWidget *window;
26: GtkWidget *label;
27: GConfClient *gclient;
28: gchar *str;
29:
30: gtk_init (&argc, &argv);
31: gconf_init (argc, argv, NULL);
32:
33: gclient = gconf_client_new();
34: window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
35:
36: str = gconf_client_get_string (gclient, "/extra/uk/thefrog/linuxmagazine/gconf", NULL);
37:
38: if (str)
39: {
40: label = gtk_label_new (" leer ");
41: } else {
42: label = gtk_label_new (str);
43: }
44:
45: if (str)
46: {
47: g_free (str);
48: }
49:
50: gtk_container_add (GTK_CONTAINER (window), label);
51:
52: gconf_client_add_dir (gclient, "/extra/uk/thefrog/linuxmagazine", GCONF_CLIENT_PRELOAU
D_NONE, NULL);
53: gconf_client_notify_add (gclient, "/extra/uk/thefrog/linuxmagazine/gconf", callback, laU
bel, NULL, NULL);
54:
55: gtk_widget_show_all (window);
56:
57: gtk_main();
58:
59: return 0;
60: }

The author

Thorsten Fischer is supposed to
be studying IT and/or Media

Consultancy. He also works as
a developer at MapMedia.

080-gnomeprogNEW.qxd 28.03.2001 18:23 Uhr Seite 82

PROGRAMMING GNOME

8 · 2001 LINUX MAGAZINE 83

AD

and written into the callback as a value in the key.
As can be seen from the Include-lines, GConf is

not actually Gnome-dependent. GConfClient still
needs, at the moment, the link to Gtk+, but this
defect will soon be consigned to oblivion.

In the second listing only any already existing key
will be read out and shown in a label. At this point it is
important to throw away the pointer str with g_free()
again, as one gets a copy back. Once the label has been
inserted into the window, the program is instructed to
react to changes in the respective directory.

Then the callback function is invoked if the
client in Listing 1 is used. The remaining lines in the
callback essentially serve to test the read-out value
for the correct type – a string. If the key contains no
string as value, a corresponding pointer is inserted.
If no value whatsoever has been set, a reference is
also made to this.
The key used can be found under the extra
hierarchy, which has been installed for additions by
third parties. I think a further subdivision through
domain names, could also be very sensible.

GConf in Gnome 2.0

It has already been mentioned that GConf will only be
fully integrated into Gnome in Version 2.0. This also
involves the installation of a few little things. Firstly, a
global client for a logged-on user is going to run, which

can be addressed via simple functions of the Gnome-
API. Then there will be dialogs in the style of Gnome
and diverse other functions, which are necessary in
order to use Gconf with ease as a programmer.
Happy Gnoming! ■

Info

Feature article on GConf by Havoc Pennington:
http://developer.gnome.org/feature/current/index.html
GConf API Documentation:http://developer.gnome.org/doc/API/gconf/index.html
Gnome FTP: ftp://ftp.gnome.org/pub/GNOME/unstable/sources/GConf/
Ximian website:http://www.ximian.com

■

GConf installation

There are no great surprises in the installation: After obtaining the source
code from the FTP site, all you need is the instruction:

tar xzvf GConf-0.x.x.tar.gz
cd GConf-0.x.x
./configure
make
make install

Here, of course, the final step must be performed by a privileged user,
normally root. Please take note of the instructions that appear at the end
of the execution of the installation script.

080-gnomeprogNEW.qxd 28.03.2001 18:23 Uhr Seite 83

