
BEGINNERSPROGRAMMING CORNER

8 · 2001 LINUX MAGAZINE 93

We laid down the

fundamentals of

character strings in the

last issue. This time

though, we will not be

settling for simple dry

runs or length

specifications, but will

be mixing our strings

vigorously together.

Substring: Part of a character
string.
Offset: Displacement with
respect to the zero point or
start. There can basically be
positive and negative offsets,
negative values being counted
back from the end.
Positional parameters: In
the variables $0, $1, $2 etc. all
parameters of a program
command are stored
separately. Nothing can be
assigned to them directly –
reloading is possible only with
set.

■

Part 3: String Processing and Regular Expressions

SCRAPS OF WORDS
MIRKO DÖLLE

Let’s start with separating parts of a string, let’s say
Hello, you beautiful world. Even if some of you
might not necessarily wish to subscribe to this point
of view, we are going to expand it a bit more. Firstly
we break down our phrase:

#!/bin/bash
set="Hello, you beautiful world"
echo "${set:0:5} ${set:21}"

The result is our old friend ‘Hello world’, which we
have derived from our phrase with the command
”${variable:offset:length}”. This command delivers a
section (Substring) of the specified character string.

The offset states how many characters from the
beginning we are starting. In the case of Hello it starts
with the first character, thus with an offset of zero,
while to reach the first letter of world, we have to
leap over 16 characters – hence, here we have an
offset of 16. If you like, you can also count back from
the end of a string, as in the following example:

#!/bin/bash
set="Hello, you beautiful world"
echo "${set:0:5} ${set: -5}"

Whenever you specify a negative offset, the count is
done forwards from the end. But be careful with
colons and minus signs: If these are not separated
by a blank space, Bash recognises the command
”${variable:-string}”, which we discussed in the last
instalment of Programming Corner.

In the example, we have come across both
forms of application of the substring function.
Variable and offset must always be specified;
without the length specification the substring will
be derived from the specified position to the end.
Knowing this, we are now able to convert:

#!/bin/bash
set="Hello, you beautiful world"
echo "${set:0:5} ${set: -5}${set:5:2} [you]
are so ${set:11:9}."

One great advantage of this method is that we
always have to know the position of the words – if
we were to use Hi instead of Hello, our whole
program would go into a spin. In fact we really want
to swap whole words and not just letters, so we
have to recognise the limits of words.

Breaking down into words

To do this, we can use the special variable
mentioned in the last issue, IFS – this includes all the

characters which are to apply as separators
between program names and parameters. The
standard rule is that these are blanks, tabulator and
Enter. For our purposes, only the blank space is the
required separator between two words. The
following program separates our phrase into words
using blank spaces and stores each word in a
different variable. The result is then the same as in
the previous listing, i.e. our converted phrase:

#!/bin/bash
IFS=" "
set="Hello, you beautiful world"
set -- $set
echo "$1 $4, $2 [you] are so ${3:0:5}."

The fourth line is new, the set command. Without
specifying parameters it lists all variables which have
been set. Otherwise set can be used to change
various settings for the run-time of Bash. Here we
are using the third domain of application: We are
filling our parameter variables (positional
parameters), which we would not otherwise be
able to alter, with new values.

The double minus characters as first parameter
are important. set has its own range of options,
which all begin with a minus sign followed by a
letter. The double minus is defined as the end
character of all options, which means that nothing
following it can be a parameter. Any minus signs
that may occur in our text are thus not
misinterpreted.

Using the variable IFS we have told set that
parameters are separated by blank spaces. This
means that for set every individual word is a
parameter; these are filed in sequence in our special
variables from $1 on upwards. By the way, it is not
possible to fill only individual ones of these variables
or to start with a specified number.

Bite-size arrays

Now we can try out the other action of the
command ${variable:offset:length}, namely in
connection with arrays. To do this, we are using the
array $*, which contains all parameter variables
such as $0, $1 and $2:

#!/bin/bash
set -- Hello world - you are so beautiful.
echo ${*:1:2}

The result is our old friend, ‘Hello world’. When
using arrays we obtain a portion of the elements

093-pcorner.qxd 28.03.2001 9:43 Uhr Seite 93

BEGINNERS PROGRAMMING CORNER

94 LINUX MAGAZINE 8 · 2001

instead of, as with character strings, a part of the
letters. In the example we start with element
number 1 and fish out a total of two elements.
Arrays normally start at element 0. But the program
name of Bash is in $0, so we find the first element
of the parameter variables, exceptionally, in $1.

Dirname and basename
are home-built

Now let’s turn to a new example, and separate the
absolute path and the file name from each other –
”/usr/X11R6/bin/X” should turn into
”/usr/X11R6/bin” and ”X”. There are ready-made
programs to do this, dirname delivers us the
directory and basename the file name. Now you
need to copy both commands using the resources
of Bash. To do this, we can apply the method of
substring function we have just learnt to arrays:

001 #!/bin/bash
002 IFS="/"
003 set -- $1
004 file="${*: -1:1}"
005 IFS=" "
006 set -- ${*:1:$[$#-1]}
007 IFS="/"
008 directory=/"$*"
009 IFS=" "
010 echo directory: $directory
011 echo file: $file

This listing needs some explanation, even if no new
commands occur in it – a bit of thought has gone
into these eleven lines, which you will not
immediately grasp at first glance. This is a good
example of a listing requiring exhaustive
documentation.

Path separation with IFS

At this point we are going to make use of the
special variable IFS, whose content will be
interpreted as separator between program name
and parameters. In the second line, we set IFS as
equal to slash – now the parameters of a program
command are no longer separated from each other
by blank spaces, but by slashes. This is also where
the unusual notation of the third line comes from:
The command set receives, as first parameter, the
double minus, and after this comes our path
specification. The slashes seen there are interpreted
as separators between the parameters, so that we
then have $1 to $5, where $1 is empty.

The trick for determining the file name is that it
must stand immediately behind the last slash – so it
is in the last parameter variable. In line four it is
stored under file. We still have to define the
directory: This is written – even if without slashes – in
the previous parameter variable. So we need them
all but the last one. To get rid of the variable with the
file name, we set IFS on the blank space. Line six
now provides us with a part of our parameter

variables, namely the first to the second-to-last ones
(”$#” is the number of parameter variables, 1 is
deducted from it) separated by spaces, and stores
them afresh using set under $1 to $3.

Constructing a path specification

Now we want the directory name separated, not
with blank spaces, but in the usual way with slashes.
To do this we exploit the fact that ”$*” delivers all
parameters – in our case $1 to $3 – one after the
other, separated by the first characters from IFS.

We set IFS as equal to slash once again and with
line eight we get back the readable directory name.
But in the conversion the first slash has gone astray,
which is why we must place it in front. Line nine is
still very important, even if it is not apparent at first
glance. If the slash was in line 10 in IFS, then echo
would be given back our path (also separated by
slashes) as individual parameter – and echo always
displays parameters separated by spaces.

Pattern recognition

The final example serves not only as consolidation
but is also intended to show you how to make life
considerably easier for yourself by using the right
commands. The following listing produces exactly
the same result as the previous one:

#!/bin/bash
directory="${1%/*}"
file="${1##*/}"
echo directory: $directory
echo file: $file

Now we are dealing with two new commands,
${variable%pattern} and ${variable##pattern}. Both
work by pattern matching. The pattern in line two
is ”/*” and stands for a character string, which
starts with a slash and is then followed by as many
characters as you like. In this case, as many as you
like means: from none up to an infinite number.
Bash has additional control symbols for pattern
matching, so-called wildcards – the most
important ones are the question mark and star. The
question mark stands for any character at all, while
the star covers as many characters as you like.

The command itself searches the variable from
back to front and checks when the pattern matches
for the first time – thus when, seen from the back, a
slash occurs and either nothing or something is
behind it. Then it deletes the pattern it has just
found, meaning the slash and any characters
behind this are removed.

We use this to get the directory. We know that
the program name stands directly after the last
slash, and have to remove this to get the directory.
The last slash itself is – as in the previous example –
also removed.

To get the file name, we must do the exact
opposite: We remove everything as far as the last

pattern matching: pattern
comparison, where a pattern

consisting of wildcards,
special characters and normal
characters is compared with a

character string.
wildcards: Joker characters,

for example question mark
and star. These stand for any

character or as many
characters as you like. These

can be used to form complex
patterns and regular

expressions.

■

093-pcorner.qxd 28.03.2001 9:43 Uhr Seite 94

BEGINNERSPROGRAMMING CORNER

8 · 2001 LINUX MAGAZINE 95

slash. To do this we have turned the pattern around,
we are now seeking any number of characters,
behind which a slash stands. The command
${variable##pattern} searches from the front,
beginning after the first match of the pattern. The
effect of the double hash is that it is not satisfied
with the first match, but tries to remove as much as
possible at once. In the example of path=/usr/
X11R6/bin/X, ${Path#*/} would settle for ”/” (the
star here stands for no characters, followed by the
slash), while ${Path##*/} greedily removes
”/usr/X11R6/bin/” (the star stands for
”/usr/X11R6/bin”, followed by the slash).

Pattern comparison from back and front
followed by removal comes in the following
variants: a moderate (${variable%pattern} and
${variable#pattern}) and a greedy (${variable
%%pattern} and ${variable##pattern}) variant.

But back to our program. In the second line we
get the directory in which, searching from the back,
we want to have the pattern ”/*” removed. In our
case, thus ”/X” is deleted, leaving ”/usr/X11R6/
bin”. In line three we use the greedy method and
search from the beginning to have the pattern ”*/”
deleted – ”/usr/X11R6/bin/” is thereby excepted,
which leaves ”X” as the file name.

Regular expressions

There is also a third way of separating the file
name from the directory, using regular
expressions:

#!/bin/bash
file="${1//#*\//}"
directory=”${1/%\/[^\/]//}”
echo directory: $directory
echo file: $file

The second line is the greedy version of the
”Search/Replace” command, usually written as
${variable//searchpattern/replacement}. Our search
pattern is ”#*\/”, which looks complicated at first
glance. The hash at the beginning means that the
following pattern must appear at the start of the

variable. The star stands for any sequence of
characters, and ”\/” is nothing but a protected slash
– otherwise it would be misinterpreted as the start
of the replacement.

So the search pattern ”#*/” is effective for any
character string followed by a slash, which must
stand at the start of the variable. Since this is the
greedy version of the command, in
”/usr/X11R6/bin/X” it lays claim to the character
sequence ”/usr/X11R6/bin/”. The pattern found will
now be exchanged for the replacement – in our
case, this is empty (two slashes in succession), hence
the matching substring is removed. This leaves ”X”,
the file name.

The next line provides us with the directory. A
search is made for the pattern ”%\/[^\/]”, where
again the slashes protected by backslashes can be
seen – the simplified form of the search pattern is
”%/[^/]”. The percentage character means that the
following pattern must stand at the end of the
variable, in order to match. In the square brackets
there is a series of characters which may occur as an
alternative – ”[123]” means that 1, 2 or 3 matches
at this point. In our case a caret and the slash stand
in the brackets, but the caret itself has a special
position. If it stands at the beginning, the following
listed characters must not come before the
brackets. ”[^/]” thus means all characters as far as
the slash. The whole pattern together thus matches
a character string beginning with a slash, then
contains any characters (with the exception of an
additional slash) and stands right at the end of the
variable.

This notation, which is admittedly not very
enlightening, becomes necessary because when
doing a Search/Replace, evaluation always starts
from the beginning. A ”/*” would have
encompassed”/usr/X11R6/bin/X” in the third line,
despite using the moderate method, and the result
would have been to leave an empty string. It was
only by knowing that the name of the program
stands after the last slash, so it contains any
characters with the exception of the slash, that we
were able to solve this case by search/replace. ■

Regular expression: Also
called ”regex” for short, is the
generic term for pattern. Text
patterns are described by a
regular expression, almost like
a little programming
language. This means regular
expressions can be used for
both searching and also
replacing text patterns.

■

Commands for string processing
${#variable} Length of the variable in characters.
${variable:?string} outputs string,when variable is empty or does not exist.
${variable:-string} Result is string,when variable is empty or does not exist, otherwise variable is sent back.
${variable:=string} string is assigned variable,when variable is empty or does not exist, otherwise variable is sent back.
${variable:+string} Result is string, if variable exists and is not empty, otherwise nothing is sent back.
${variable:offset} Delivers the content of variable from position offset to the end. If variable is an array, all elements from offset to the end of the array are given back.
${variable:offset:length} Delivers length characters of the content of variable from position offset. If variable is an array, length elements from element offset are returned.
${variable:#pattern} Removes the smallest matching pattern from variable (moderate). Searches from front to back.
${variable:##pattern} Removes the largest matching pattern from variable (greedy). Searches from front to back.
${variable:%pattern} Removes the smallest matching pattern from variable (moderate). Searches from back to front.
${variable:%%pattern} Removes the largest matching pattern from variable (greedy). Searches from back to front.
${variable/pattern} Searches variable from front to back and removes the first matching pattern.
${variable//pattern} Searches variable from front to back and removes all matching patterns.
${variable/pattern/string} Searches variable from front to back and replaces the first matching pattern with string.
${variable//pattern/string} Searches variable from front to back and replaces all matching patterns with string.

093-pcorner.qxd 28.03.2001 9:44 Uhr Seite 95

