
Assuming that you have switched off the most
important (or most useless) services, as described in
the last issue, we can now turn to protection for the
remaining daemons. We will achieve this by means
of a firewall that controls outside access.

The subject of firewalls is notorious for being
extremely complex - unfortunately with some
justification - but for home use you’ll be up and
away with only a few lines. Administrators
configuring large servers for companies or providers
need to take many peripheral conditions and special
services into account that are of no, or only minor,
importance to home users.

For our example, we are using a computer
dialing to the Internet via an ISDN card. Our
interface is ippp0 and the IP address assigned by our
Internet provider is 192.168.1.1. Modem users
simply need to leave out the ‘i’ in the device name;
the modem interface is normally called ppp0.
Network cards can also be used in the same way,
but substituting eth0. The procedure itself is always
the same.

The firewall acts as a filter between network
devices, such as modems or ISDN and network
cards, and the internal area. Which data ends up
where is determined using filter rules. There are four

FEATURE SECURITY WORKSHOP

30 LINUX MAGAZINE 9 · 2001

After the mayhem we caused in part

one, where we got rid of most

daemons, we will now build a simple

firewall that should insulate us

against the last remaining few gaps.

Firewall: firewalls are used wherever private networks meet public ones, for
example on company servers providing Internet access. Firewalls are meant to

ensure that unauthorised access to the internal, private area is impossible.
Depending on the complexity and size of the network, set up can take several

days. However, firewalls are also sensible for domestic use if you want to protect
your own computer against attacks from the Internet.

Masquerading: primarily used on servers providing Internet access for local
networks. Masquerading assigns the server’s IP address to all queries from

internal networks. The replies are translated back, so that internally there is no
apparent difference between masked and unmasked connections. However, the

local machines are not accessible from outside, as their IP addresses are not
revealed, and queries can therefore only be made to the masquerader’s IP, which

ends up on the server itself. Masquerading is commonly used for leased line or
flat rate connections that are used by more than one machine. Providers normally

only give out one IP address per connection, which can only be used to address
one machine. All other machines use private IP addresses and the masquerader

attaches their own IP to Internet queries and handles the delivery of replies.

■

Protecting Linux systems
against attacks: part 2

CLOSE
BULKHEADS!

MIRKO DÖLLE

030firewall.qxd• 07.05.2001 10:21 Uhr Seite 30

basic areas for these rules: all rules entered in the
input section are applied to any incoming data
packets in sequence, like a chain, while the rules
under output are applied in turn to any outgoing
data packets. The forward rules are used particularly
for masquerading. In the fourth area it is possible
to set up your own sections and rules. This is not
normally required for home use, and we will deal
with masquerading in a separate article.

The standard kernel of most distributions
already contains firewall support, so no new
compilation is necessary. The required package
ipchains is set up for virtually all standard
installations; if not, it can be found among the
network utilities and installed personally.

We want to close the bulkheads and only give
access to a few selected services. There are
fundamental disadvantages to this method, which
we will discuss in detail when looking at the
respective rules. You can examine the rules that
have been set up at any point using ipchains -n -L.
To start with, everything is permitted:

linux:~ # ipchains -L
Chain input (policy ACCEPT)
Chain forward (policy ACCEPT)
Chain output (policy ACCEPT)

Policy describes the basic attitude towards data
packets. When all rules in the chain have been
applied to the packet without it being re-directed

somewhere else, it is accepted with ACCEPT or
discarded with DENY. Our aim is to deny everything
that is not expressly permitted – therefore we will
set the input policy to DENY:

ipchains -P input DENY

Rules are always processed in sequence of entry, so
we need to specify what we will accept from ippp0
before discarding the rest. When a rule that
obviously does not contain any errors doesn’t work,
it is usually due to an incorrect sequence. Once a
packet has been discarded you cannot get it back in
the next rule.

Now, nothing is working at all: any data is
discarded, no matter whether received via the
network, ISDN, modem or locally. In order to be
able to use all our local services, and to keep our
graphical interface working, we must except
ourselves from being discarded:

ipchains -A input -i lo -j ACCEPT

FEATURESECURITY WORKSHOP

9 · 2001 LINUX MAGAZINE 31

ICMP: Internet Control Message Protocol – used in case of unavailability to send
an appropriate message to the originator of a query. For instance, ping sends
small data packets with ICMP echo-request (request for return) to the
destination, in order to receive back the same data, via ICMP echo-reply (reply).
This allows it to calculate the time lag between send and receive.

■

[top]
Figure 1: Colourful activities: Most
daemons can be recognised by
the ‘d’ on the end, but also include
portmap, cardmgr and cron

[below]
Figure 2: Utilities which (almost)
no-one needs: In /etc/inetd.conf too,
there are hidden daemons, which are
started completely automatically

030firewall.qxd• 07.05.2001 10:22 Uhr Seite 31

The parameter -A specifies that we are adding a
rule, input indicates the required section: all
incoming data. Then follows the actual filter rule. -i
lo applies to any data coming in via the loopback
device, which can only be accessed by programs
running locally on our machine and seeking a
connection to other programs or services on our
computer. Finally, with -j we stipulate what happens
to the packets: they will be accepted.

Sealing ourselves off completely doesn’t only
have positive effects. For instance, we will no longer
receive messages when we cannot reach a server.
However, these messages are very important for
smooth Internet traffic. Consequently we will
permit them initially, from any direction:

ipchains -A input -p icmp -j ACCEPT

The parameter -p icmp indicates the ICMP protocol,
responsible for transferring these messages; -j
ACCEPT again represents the processing: accept.

Clear nameserver access

Another very important service is the Domain Name
Service, or DNS for short. The DNS servers,
nameservers for short, handle the resolution of, for
example, www.linux-magazine.co.uk to the server’s

IP address, in this case 195.99.156.130. Without this
IP address you won’t get anywhere on the Internet,
so we must give access to our nameservers.

You will need the script in Listing 1, which you
should save as resolv-list in the directory
/usr/local/bin. Please don’t forget to make it
executable with chmod a+x /usr/local/bin/resolv-list.
resolv-list provides us with a list of nameservers
used, which we then make accessible in our firewall
using the following commands:

for ns in ̀ /usr/local/bin/resolv-list`; do
ipchains -A input -s $ns 53 -d 192.168.1.1 U

1024: -i ippp0 -p udp -j ACCEPT
ipchains -A input -s $ns 53 -d 192.168.1.1 U

1024: -i ippp0 -p tcp -j ACCEPT
done

The difference between the two ipchains lines is in
the protocols specified with -p, in this case UDP and
TCP. The nameserver in our example is
192.168.2.1. Your IP will be different, depending on
your Internet provider. You can enter several
nameservers. Linux can cope with up to three.

The data source address is specified with -s. In
our example the variable $ns was entered. After
that follows the port number, or service ID, ”53”.
Finally we name the destination, -d, with the
possibility of restricting the permitted range of
port numbers. By entering 1024: we are
permitting any port number from 1024 upwards
to 65535. Ports below 1024 have a special status,
but more about that later.

If you now enter ipchains -n -L, you should
see the list in Listing 2 on the left-hand side of
the page. Don’t be put off by the second line.
Even though it looks like everything is
permitted everywhere, this is not the case. This
output format does not display the device
name to which the rule refers, and during set
up we had specified the local loopback device
with -i lo.

Access encouraged

We also want to permit known users to log onto
our system. In order to stop user names and
passwords from being captured we will only allow
the use of the encrypted Secure Shell or SSH for
short. We deliberately spared the relevant daemon,
sshd, when we were killing daemons in the last
issue. Access is given using the rule:

ipchains -A input -d 192.168.1.1 ssh -p tcp -U
i ippp0 -j ACCEPT

The parameter -i ippp0 makes the rule applicable
to any data coming in via the ISDN card. If we
had another network card with further Linux
machines attached to it, no one could log on to
the system from those, as the rule is restricted to
the ISDN card and we are, by default, rejecting
anything else.

FEATURE SECURITY WORKSHOP

32 LINUX MAGAZINE 9 · 2001

UDP: User Datagram Protocol – a connectionless protocol, which means that data
packets are not acknowledged by the recipient. The sender also doesn’t repeat

the data. This is used, for example, when querying DNS servers to find out the IP
address associated with a host name. UDP is very fast, as no connection is

established. UDP data cannot be sent directly through the Internet and are
therefore normally wrapped in IP packets.

TCP: Transfer Control Protocol – a frequently used Internet protocol. It is often
wrongly referred to as TCP/IP, even though these are two protocols (TCP and IP).

TCP ensures, among other things, that data is assembled in the correct order.
IP: Internet Protocol – ensures the transfer of data packets on the Internet. This is

where the IP addresses come in, which uniquely identify sender and recipient.
UDP, ICMP and TCP data packets are wrapped in IP packets and provided with the

addresses of sender and recipient before being sent through the Internet.

■

Listing 1: /usr/local/bin/resolv-list
if [-r /etc/resolv.conf]; then
set – `grep -i nameserver /etc/resolv.conf`
while
[$# -ge 2];

do
echo $2
shift 2

done
fi

Listing 2:
Chain input (policy ACCEPT)
target prot opt source destination ports
ACCEPT all ——— 0.0.0.0/0 0.0.0.0/0 n/a
ACCEPT icmp ——— 0.0.0.0/0 0.0.0.0/0 * -> *
ACCEPT udp ——— 192.168.2.1 192.168.1.1 53 -> 1024:65535
ACCEPT tcp ——— 192.168.2.1 192.168.1.1 53 -> 1024:65535
Chain forward (policy ACCEPT)
Chain output (policy ACCEPT)

030firewall.qxd• 07.05.2001 10:22 Uhr Seite 32

This rule will admit any data packets destined
for the SSH service of machine 192.168.1.1 and
entering the system via the ISDN card ippp0. As the
packet has now been accepted, no other rules will
be applied. ipchains -n -L now gives us:

Chain input (policy ACCEPT)
target prot opt source destination U
ports
ACCEPT all ——— 0.0.0.0/0 0.0.0.0/0U
n/a
ACCEPT icmp ——— 0.0.0.0/0 0.0.0.0/0U
* -> *
ACCEPT udp ——— 192.168.2.1 192.168.1U
.1 53 -> 1024:65535
ACCEPT tcp ——— 192.168.2.1 192.168.1U
.1 53 -> 1024:65535
ACCEPT tcp ——— 0.0.0.0/0 192.168.1U
.1 * -> 22
Chain forward (policy ACCEPT)
Chain output (policy ACCEPT)

Web server access

If we want to make our Apache Web server
accessible from outside, we require another
ACCEPT rule:

ipchains -A input -d 192.168.1.1 http -p tcp U
-i ippp0 -j ACCEPT

As you can see, the pattern is the same, only the
service entry has changed. The rule listing is
extended by one line:

Chain input (policy ACCEPT)
target prot opt source destination U
ports
ACCEPT tcp ——— 0.0.0.0/0 192.168.1U
.1 * -> 80

Ports and services

Anything that is not permitted is denied. This, at the
moment, includes anything that is not a nameserver
reply or SSH connection – even standard surfing
activities. So we will have to consider what else we
need to permit, to enable normal operations. This is
not possible without knowledge of ports.

Behind the entries for services such as ssh or
http in our examples lie the port numbers. In the
example of how to give nameserver access we
actually worked directly with the port number, 53.

Imagine a large block of flats in which all the
letter boxes have been numbered sequentially –
they all have the same address (IP), and letters can
only be delivered correctly on the basis of the
letterbox number (port number) or the name on the
letterbox (service description). You can find out
which service corresponds to which port number
from the file /etc/services.

Ports 0 to 1023 have a special role: these
numbers are reserved for privileged services. The
daemons behind them are normally running with
root privileges. These ports are generally not
available to normal users.

Replies to Netscape queries always originate
from ports starting at 1024. We still need to give
access to these. However, we can restrict the whole
thing a bit further: it is not necessary during surfing
for anyone to connect to us, as we are querying the
server and it returns the reply through the same
connection. Incoming connection requests are
therefore not accepted (! -y):

ipchains -A input -d 192.168.1.1 1024: -i ippU
p0 -p tcp -j ACCEPT ! -y

There is still one catch: the user’s SSH client will
normally try to open a second channel in the range
of ports 600 to 1023 once it has logged onto the
server. This is no longer possible, as everything up to
port 1023 has been sealed off. For some helpful
advice, see the SSH and Firewall box.

Practical effects

To summarise: we are accepting SSH connections
through the ISDN card, as well as requests to our
Apache Web server. ICMP messages, DNS server
replies and requested Internet data are also let
through. On the other hand, any external
connection that is not routed through SSH or the
Web server will always be ignored.

These settings will only have a minor impact on
the user sitting at their machine. Even if the talk
daemon has not been switched off (as discussed in
the last issue) users can no longer be addressed
from the Internet. External administration via swat
or linuxconf is not possible, however it is no
problem from the user’s own machine. The only
limitation is with IRC: we can no longer send data

FEATURESECURITY WORKSHOP

9 · 2001 LINUX MAGAZINE 33

Table 1: Service access rules
Nameserver:
ipchains -A input -d IP 53 -p udp -i Interface -j ACCEPT
ipchains -A input -d IP 53 -p tcp -i Interface -j ACCEPT

SSH access:
ipchains -A input -d IP ssh -p tcp -i Interface -j ACCEPT

Telnet access:
ipchains -A input -d IP telnet -p tcp -i Interface -j ACCEPT

Sendmail access:
ipchains -A input -d IP smtp -p tcp -i Interface -j ACCEPT

Apache Web server:
ipchains -A input -d IP http -p tcp -i Interface -j ACCEPT

FTP access:
ipchains -A input -d IP ftp -p tcp -i Interface -j ACCEPT
ipchains -A input -s 0/0 ftp-data -d IP 1024: -p tcp -i Interface -j
ACCEPT

ICQ:
ipchains -A input -d IP 4000 -p tcp -i Interface -j ACCEPT

IRC with DCC:
ipchains -A input -d IP 1024: -p tcp -i Interface -j ACCEPT

This rule is to be used with care, as it allows an external connection to be
established on non-privileged ports. If this rule is implemented, no other
rule for TCP protocol and ports from 1024 upwards must be active.

030firewall.qxd• 07.05.2001 10:22 Uhr Seite 33

via DCC or otherwise. Our FTP server is also no
longer accessible to outsiders.

Table 1 is a list of permission rules you can build
into a firewall to allow access for individual services.

Automatic activation

A huge problem in building a domestic firewall is
that your own IP address changes each time you log
on - and consequently needs to be corrected in the
firewall rules. Most firewall configuration tools
make no provisions for changes in the IP address
and are therefore not suitable for home use.

Ideally, the rules would be activated
automatically after each login, with the correct IP, of
course, and deactivated once you log off.

The required scripts into which we can integrate
our rules are called /etc/ppp/ip-up and /etc/ppp/ip-
down. ip-up is called as soon as login has occurred,
and ip-down once you have logged off. We are
making use of the fact that parameter $1 gives us
the modem or ISDN interface and $4 our assigned
IP address. Since the lines for set up and removal of
the firewall rules are almost identical, we will

combine the rules in the file /etc/ppp/inet_chains,
using the appropriate variables for IP and interface
used. You can see a relevant example on the CD
under LinuxUser/firewall/inet_chains. There you
will also find the access rules mentioned in Table 1,
commented out with a hash (#) at the beginning
of the line and therefore not active. Should you
want to give access to individual services you only
need to remove the hash. The file
/usr/local/bin/resolv-list from Listing 1 is no longer
needed for this by the way, inet_chains has its own
function for this purpose.

The call to inet_chains should be entered near
the start, preferably in the second line, of
/etc/ppp/ip-up and /etc/ppp/ip-down:
In /etc/ppp/ip-up,

test -x /etc/ppp/inet_chains && /etc/ppp/ineU
t_chains up $@

In /etc/ppp/ip-down,

test -x /etc/ppp/inet_chains && /etc/ppp/ineU
t_chains down $@

Conclusion:

In regard to standard installations, distributors have
a lot of catching up to do. Only Mandrake possesses
a useful mechanism that will switch off virtually any
service at a paranoid setting. With most other
distributions even security profiles are little help.
Distributions especially aimed at beginners, starting
with the SuSE 7.0 personal edition, ought to be
better suited to their end users’ requirements. It
must be hoped that the next versions from the big
distributors will take this on board.

Nevertheless, no computer is really secure. Even
if the possibilities described above provide you with
reasonable external protection, one day the error
that will invalidate everything may be found. And
there is one thing you ought to know: the Internet
is evil, and it gets everybody eventually. ■

FEATURE SECURITY WORKSHOP

34 LINUX MAGAZINE 9 · 2001

Info

Firewall manual by Guido
Stepken with many examples:

http://www2.little-
idiot.de/firewall/

Notes and extensions by Dirk
Haase for users of EasyLinux

for the first part of Close
bulkheads!:

http://members.tripod.de/krids
oft/easyl/ha/ha005.html

■

Figure 3: Almost all utilities were
superfluous: we need http-rman for

the SuSE help system, swat stands in
for the system administration

program linuxconf of other
distributions.

Figure 4: Activation and deactivation is
done differently from one distribution

to another – here for example in
linuxconf under Red Hat (left) and

DrakConf under Mandrake.

SSH and firewall
SSH will normally try to establish a second channel through a port between
600 and 1023. However, as we have prevented this with the firewall set up
in the article, SSH would not be able to connect. There are two solutions:
either call SSH with the parameter ‘-P’, or amend the rights for SSH.
Normally any SSH connection is established with root permissions in order
to be able to use a port below 1024. Using the command chmod u-s ̀ which
ssh’, you can ensure that SSH will be started with your user rights in future
– and automatically uses a port upwards of 1023 as the return channel.

030firewall.qxd• 07.05.2001 10:22 Uhr Seite 34

