
In autumn 1999, when
Borland announced a Linux

version of Delphi and later of
C++-Builder as well, there was
great astonishment, even

among the developers in their
own company. After all, these
products were software, which
lives very much by its visual

nature and should therefore
depend heavily on Windows.

The launch date was initially
planned for one year after the
announcement, but this was

exceeded by about six months in
view of the high cost of
development. The US retail
version just completed can now
show whether the development
period was nevertheless
sufficient to be able to follow in
the successful footsteps of
Delphi.

Windows past

The promise made by Borland
was to offer the options of
Delphi for Linux. In a later
version an equivalent to C++-
Builder is intended to follow
as part of Kylix. But what

does Delphi do now? The aids of the Delphi IDE
simplify, in all product variants, the easy creation of
graphical user interfaces (GUIs). Here control
elements are no longer created by a function
command in the program code, but the drafting of
a window, dialog or form is simplified in a form
designer for selecting the control elements from a
component palette and the visual determination of
position and size by mouse click.

A properties editor, which can be opened at any
time as a free-floating window, displays all the
properties of the currently-selected components in
the form of a table and enables the direct
manipulation of these properties by keyboard and
mouse; the changes can be seen immediately in the
designer.

The more expensive versions of Delphi also
offer, purely for designing forms - where ordinary
windows and dialog boxes are also referred to as
forms - more besides: with the aid of database
support, control elements can for example be linked
to a field of a data table; the Web support allows
the dynamic creation of Web contents, and the
support of COM/ DCOM/ActiveX and CORBA under
Windows makes it possible to develop real multi-
layer database applications.

Linux future

So how does Kylix convert this to Linux? Firstly, the
software package will have to be installed; this can
be done using the very well-known installation

COVER FEATURE KYLIX

58 LINUX MAGAZINE 9 · 2001

Kylix 1.0: Delphi for Linux

DEVELOPMENT-
CAPABLE

SEBASTIAN GÜNTHER

Now at last, after being constantly postponed,

the first version of Kylix, Borland’s Linux porting

of the development environment Delphi has

reached the UK. The conversion has only partly

succeeded, so there are lots of problems to spoil

the fun of working with what is truly a very

powerful development tool.

058Kylix.qxd• 07.05.2001 10:28 Uhr Seite 58

program from Loki Entertainment Software, either
via Gtk-based graphical user guide or by command
line. Overall, it performs well: Among other things,
it checks at the start whether all the requirements
are met. So a kernel from at least the 2.2 series
must be used, Glibc from version 2.1.2 and Libjpeg
from 6.2 are absolutely essential.

A full installation takes up about 200MB on the
hard disk, and this can only be reduced noticeably
by doing without the online documentation, which
would roughly halve it.

Old wine in new bottles

The long load times when you start the integrated
development environment are an early clue: The IDE
is not so much a newly-developed Linux application,
it’s just that with the aid of the Wine library the old,
familiar Delphi IDE has been ported onto Linux.

Wine, the imitation Windows programmer
interface for Unix-type systems, does allow a very
rapid conversion of Windows software onto
(among others) Linux, but it does bring a number of
considerable disadvantages with it: Long load times,
high memory consumption, slow initiation and
sluggish reaction by the graphical user interface,
and font problems with many X11 installations. If
possible, therefore, it is advisable to use TrueType
fonts from an original Windows installation.

But whether Wine is also responsible for the
over-frequent crashes of the IDE, is a question
nobody can answer.

After the start, in any case, four windows
appear for the user, which float on the desktop: The
command centre is in the form of a long narrow
window at the top edge of the screen. It contains
the menu bar, symbol bars and the component bar.
Also opened: a form in the design mode, a source
text editor and the Object Inspector. All registered
classes of components, spread over several pages,
are shown in the component bar in symbol form.

This bar is important in connection with a
designer, a sort of form designer: A component, for
example a simple button, is selected from the
corresponding category by a mouse click. Another
mouse click in the form view inserts a new
component of the type selected at the site of the
click. Each component can be moved later by
mouse; it is also easy to change the size directly.

By clicking on a component in the designer, this
component is selected; the Object Inspector always
represents the corresponding properties and event
handling routines of the currently-selected
component. The Inspector window always presents
them in two columns: The first contains the names
of the properties, the second the corresponding
property values. A click on a value makes it editable.
Unfortunately Kylix can only show properties as
pure text, but a graphical representation of certain
types of property such as colour values would surely
be more user friendly.

Four sections of the component bar are devoted
to the purely visual components. Behind this is
hidden, basically, all the types of control element
already familiar from Windows: buttons, menus,
symbol bars, but also complete dialog boxes for
things such as file selection. Three additional
sections serve as database support: Special
database-capable variants of the normal control
elements can be connected to a data source
component.

Flexible database support with
dbExpress
This data source forms the link between control
elements and data set components: for example,
during development of the application, should it
ever become necessary to change from an SQL table
to an SQL stored procedure, to do this it is only

COVER FEATUREKYLIX

9 · 2001 LINUX MAGAZINE 59

[top]
The IDE after creating a simple MDI
application: As well as the command
centre and an editor window, a form
editor and the property editor can
also be seen

[above]
The automatically-created basic
framework of the MDI application is
in fact ready to run. But even here
the first errors crop up

058Kylix.qxd• 07.05.2001 10:29 Uhr Seite 59

necessary to specify the data source of a new data
set component - all control elements connected
with the data source then automatically access the
new mechanism.

Kylix offers several alternatives as data set
components, but there have been some major
changes in comparison with Delphi under Windows
in this area: In place of the old BDE (Borland
Database Engine) and MIDAS there are now a good
half dozen new components named dbExpress.
They use their internal, special Kylix database drivers
to execute the new commands. Drivers for the
freely available databases MySQL and Borland
InterBase are delivered from the factory as well as
for the well-known commercial products IBM DB2
and Oracle 8i.

Friends of older database systems seem at first
to have been left out in the cold, because unlike
Delphi, so far under Kylix there is no support for a
general interface standard like ODBC or ADO,
although this would be perfectly possible with
UnixODBC, as for example StarOffice demonstrates.
This gap will surely be closed very quickly by
interested third-party suppliers.

As data set sources, dbExpress offers the usual
database objects: Direct read and write access to
tables, the result data set volume of a stored
procedure or the result of a manually coded SQL
query. But a data source cannot be linked to a table
to create a master-detail relationship: The table
displays all the data sets which correspond in a field
to the current value of a selected field of the master
data source.

A classic example of this: A master table
contains customer data, while a calculation table
acts as a detail table. The customer number of a
calculation is linked with the customer number of
the customer data table. The master-detail
relationship ensures that the detail data set always
represents exactly the calculations of the currently
selected customer.

Also of interest are the so-called Client Data
Sets. These enable the use of a simple database in
the memory, swapping into a file on the user
computer, but also complex mobile solutions, in
which a client does not always have access to the
database server in a network.

Rapid development for network
and Internet

The last big area of the component bar concerns
the development of network or Internet
applications: As well as components which
encapsulate the TCP/IP or UDP/IP sockets, the Web-
dispatcher distributes HTTP queries to various data-
producing components called producers. These
HTTP queries can be differentiated according to the
type of command (such as get, head, post, put) and
the address (URI).

Since there are also components which exist as
producers that can create HTML pages or tables
automatically from a database, whole Web servers
can be created using Kylix. But equally, it is also
possible to create just one CGI application or an
expansion module for the Apache server.

For further reaching Internet and network
support Borland supplies the new Linux version of
the well-known open source component library Indy
(formerly known by the name of Winshoes) along
with Kylix. This allows access to practically all
relevant Internet protocols: TCP/IP, UDP/IP, daytime
and time servers, DNS, Echo, finger, FTP and TFTP,
Gopher, HTTP, ICMP, POP3, NNTP, QOTD, SMTP,
SNTP, Telnet and WhoIs. Raw Sockets for
communication under TCP or UDP are also
supported by Indy.

Servers for corresponding protocols can also be
realised easily, those supported being TCP/IP, UDP/IP,
Chargen, daytime and time servers, DICT, Discard
Protocol, Echo, finger, Gopher, Hostname, HTTP,
IMAP4, IRC, Portmapping, NNTP, QOTD, Telnet,
TFTP, IP Tunneling and the WhoIs service. 21
additional components also provide help functions,
such as encoders or decoders for important codings
like Base64 or UUEncode.

Development means more
than just clicking

A relatively large part of applications development
does consist of clicking together existing
components into data modules or forms and
placing the corresponding properties in the object
inspector. A great many assistants and special
component editors continue to support the creation
of complex applications. But at some point, glue
code will have to be written, to bond, hold together
or expand the structure.

This is where the powerful source text editor
and the object Pascal compiler come into play. For
every object that can be created in the large
designers (such as for forms or data modules), a
unit is created automatically. In Pascal, larger
applications are not simply distributed over several
source text files, but a clear distinction is made
between the main program and the add-on
modules – the units. Each unit can be independently
compiled and integrated into various applications at

COVER FEATURE KYLIX

60 LINUX MAGAZINE 9 · 2001

When editing, built-in programming aids such as code-completion are extremely useful. Here you
can see what happens if, after entering the point, you hesitate: Kylix displays which elements the
global application object possesses. You can now select a method, such as MessageBox, from the list

058Kylix.qxd• 07.05.2001 10:29 Uhr Seite 60

the speed of light. The split into main module and
units is, by the way, the main reason for the
generally very short compile time of these sorts of
Pascal compilers, as here it really is only the parts of
an application which have actually changed that
have to be recompiled.

Editing at a higher level

The IDE creates the basic framework for units
themselves, where a new class of the respective
basic class is derived for each form or data module.
The components used here now all reappear as
fields within the new class. The programmer can
even save a bit more typing work: The code
developed most often will be one that is intended
to respond to specific events. The object inspector,
though, as already hinted at, lists not only the
properties of a component, but also all possible
events. A simple double-click on one such event
entry causes the IDE automatically to insert an
event-handling routine in the source text of the
corresponding unit. This now only needs to be filled
with code.
And this is a real delight with the easy-to-use editor:
Because, as befits a development environment from
the superior class, it offers more than just syntax-
highlighting and adaptable keyboard layouts. If, for
example, a certain keyword is typed in and then
Ctrl+J is pressed, the editor recognises this as a copy
command and replaces the keyword with a more
complex expression. Thus an forb plus Ctrl+J turns
into a complete block for ...:=... to ... do begin ...
end.

Borland combines other programming aids
under the name Code Insight, all based on an
evaluation of the source texts during editing. Code-
completion becomes active after a short pause after
entering a point or pressing Ctrl+Enter. It shows a
selection list of all the appropriate continuations at
the current cursor position – for example after the
name of an object variable and a following point
the list shows all properties and methods for this
object. The editor recognises the type of variable
from its previous declaration.

If a procedure or a function is now called up and
if the parameter list is to be entered, here again the
IDE helps: A brief hesitation during input leads to a
display of the declared parameter list. There is now
no need to guess or look it up in the documentation
to find the correct parameter. And even during
actual programming the IDE provides a built-in
symbol browser, the Code Explorer, which can
display the structure of a module in real time.

Easy debugging

During troubleshooting via the integrated
debugger, the ToolTip support is useful as it is
familiar from other development environments
under Windows. If the mouse pointer in the editor

stops over a symbol name, the value of this symbol
is calculated and displayed in a ToolTip. So in many
cases it is no longer necessary to work laboriously
over the additionally available expression evaluation
or the watch list.

The debugger turns out to be an indispensable
tool during application development, it supports
practically everything that could be expected of a
modern debugger, including an in-built
disassembler.

For handling larger projects, which are spread
over several applications or modules in the shared
object format (.so), the IDE has a project manager. It
combines all binary modules (files with executable
code) into a project group, for which an individual
makefile is created. On the other hand, in order to
combine a group of components as smaller units
into a SO-module, packages can be produced. A
package combines several units with components
and there is also a comment as to which other
packages this package depends on.

This technology makes it easy to use larger
components from several applications in
combination via a SO-file. The components supplied
with Kylix are even installed in such packages.

An application created with Kylix finds and
loads the necessary package SOs at run time by
itself – no registration in the system is necessary.
New packages and components though, do have to
be registered in the IDE, so that they can be
implemented in applications.

The online documentation leaves a mixed
impression. Borland has licensed a tool here that
makes it possible to show Windows help files under
Linux. The documentation thus corresponds, in
terms of structure, to that of Delphi. But the
descriptions are not error-free or complete and
generally the help texts could easily be a bit more
comprehensive in many places. Also, many things

The IDE provides a powerful
debugger. Since Kylix
uses a real compiler, there is
also a display of the CPU
register and a disassembler

COVER FEATUREKYLIX

9 · 2001 LINUX MAGAZINE 61

058Kylix.qxd• 07.05.2001 10:29 Uhr Seite 61

are described only from a very high level of
abstraction. Anyone interested in the internal
method of working will not find much information.

VisualCLX outside, Qt inside

Borland has developed a component library for
Kylix, for use on several operating systems, called
CLX (pronounced clicks). It is derived from Delphi’s
VCL, the Visual Component Library, and also works
with Delphi 6 on Windows.

CLX is split into several parts: The BaseCLX
contains general classes and routines (for file accesses
or loading and storing components for example). This
part is relatively independent of the operating system,
as it largely relies on the underlying Run-Time Library,
or RTL, which itself abstracts most of the functionality.

The same holds true for NetCLX - the network
components - and for DataCLX, as this is merely a
link between dbExpress and VisualCLX. This
ultimately contains all visible components, thus
mainly control elements. It rapidly turned out to be
a new wrapper for an old acquaintance: TrollTech’s
Qt-Library, which is also the basis for the popular
KDE-Desktop environment.

The sense and nonsense of this decision may be
disputable, because Qt is still far more than just a
GUI library. When all’s said and done, the entire
functionality of BaseCLX is also reproduced here
one way or another, but, mainly for reasons of
compatibility with Delphi, is not used by VisualCLX.

The online help is based on
the help files familiar

from Windows, which have
been extended according

to the scheme which
you may know from Delphi

COVER FEATURE KYLIX

62 LINUX MAGAZINE 9 · 2001

Visual development environments

In the last few years a new method has been becoming ever more popular: Instead of
writing software complete, line by tedious line manually, advanced development packages
support or replace this process with a range of visual help programs. These attempt to
reduce applications development to combining ready-made components plus a bit of classic
code as glue.

For example Microsoft, with Visual Basic, scored a direct commercial hit in this field,
whereupon suppliers of countless additional components shot up out of the ground like
mushrooms. But other firms too, such as Borland, were developing similar solutions at the
same time. Borland was formerly mainly known for two products: the C/C++ compilers
(starting with Turbo C) and Borland Pascal, the amalgamation and further development of
the classics Turbo Pascal and Turbo Pascal for Windows.

Visual Basic (VB), though, had to combat a number of deficits: For a long time, VB was
not really a proper compiler, but the code was interpreted at run-time, which did not
exactly have a positive effect on the execution speed. On top of this, the component model
used was anything but fast or memory saving. The upshot was that VB applications on the
computers of that time turned out to be very large, memory-guzzling and slow. But on the
other hand application development was extremely simplified, which in many cases more
than compensated for the greater demands on hardware.

Borland read the signs of the times, and so, in a tour de force, Borland Pascal, a
representative of the classic method of programming, was expanded into an easy
development package for modern, graphical applications.

Two things were necessary for this: Extending the language of Pascal for better support
of objects and components - the language variant Object Pascal was created - and a high-
powered integrated development environment (IDE) together with special support for
component technology for rapid application development (RAD).

The finished package with RAD-IDE finally came out under the name of Delphi and was
now available only for Windows, while Borland Pascal also supported DOS. In parallel, a
product was created, with C++ Builder, which on the basis of the same component library
made it possible to work with the language C++ instead of Pascal.

058Kylix.qxd• 07.05.2001 10:29 Uhr Seite 62

COVER FEATUREKYLIX

9 · 2001 LINUX MAGAZINE 63

The variant of the programming
language Pascal, originally created
for educational purposes, on which
the modern Pascal compilers such as
Delphi, Kylix or even Free Pascal are
based, was christened by Borland
with the name of Object Pascal. In
comparison with the classic ANSI-
Pascal standard it was mainly
expanded by options for object-
oriented programming (OOP).
Borland was in fact introducing
objects in Turbo Pascal 5.5 more than
ten years ago, but with Delphi the
OO-capabilities were considerably
extended.

An example demonstrates some of
the new capabilities using a class to
generate random numbers:

program ClassDemo;

type
TRandomGenerator = class
private
FMaxValue: Integer;
function GetValue: Integer;

public
constructor Create;
property MaxValue: Integer read U

\FMaxValueU
write FMaxValue;

property Value: Integer read GetU
Value;
end;

constructor TRandomGenerator.Create;
begin
Randomize;
MaxValue := 10;
end;

function TRandomGenerator.GetValueU
: \Integer;
begin
Result := Random(MaxValue + 1);

end;

var
RandomGenerator: TRandomGenerator;
i: Integer;
begin
// Create random number generator
RandomGenerator := TRandomGeneratoU
r.\Create;
try
RandomGenerator.MaxValue := 99;

WriteLn(`10 Random numbers in the rU
ange \0..9U
9:’);

for i := 1 to 10 do
WriteLn(RandomGenerator.Value);

finally
RandomGenerator.Free;

end;
WriteLn(`Done.’);
end.

One of the extensions in Object Pascal is
the properties, which exist in addition to
the normal methods and object fields
(the variables within an object): A
property has, like a field, a data type. For
a property, though, no code is created,
nor is memory space reserved in the
object - the property is a virtual
construction, which can be applied in the
program code almost like a field.

To now give the property a meaning,
the programmer states where it receives
its value in a read access, or what is to
happen to the new value in a write
access. In both cases it is possible,
separately in each case, to define a field
or a method as source or destination. In
the example the property MaxValue
corresponds precisely to the internal
field FMaxValue, while value can only be
read - each read access would be
identical to calling up the method
GetValue.

Properties were mainly created for
component-oriented programming,
since run-time type information is
created for all properties within a
published extract (an extended public
extract): At run-time the list of all
properties in a class can be queried. But
even without RTTI the properties have a
few advantages: So one could easily
extend the sample program so that a
write access on value leads to an
initialisation of the random number
generator at a specified value. In exactly
the same way, MaxValue can also be
changed later to method access, without
the rest of the application having to be
changed.

Compared to C++, it is noticeable
that objects are always stored on the
heap, so they cannot be placed on the
stack and automatically constructed and
deconstructed. But this is only a
disadvantage in a few cases, for example
when simple data structures (such as a
rectangle structure: x1, y1, x2, y2) are to
receive a simple OO-wrapper.

By way of compensation, a few of the
complicated C++ peculiarities such as
default- and copy-constructors in Object
Pascal could be dropped. As a rule,

though, that is, with storage on the
heap, practically identical procedures are
used in the various compilers.

As can be seen from the example,
Object Pascal also supports exception
handling. The functional method is
extremely similar to that of C++ or Java:
If an error occurs (exceptional condition),
an appropriate exception object with
additional information is created. These
can now be caught via a try/except block,
while a try/finally-block allows the code,
which is also executed if an error
condition arises within the try-section, to
be specified:

try
Anyfunction;
except
on e: Exception do
WriteLn(`error: ̀ , e.Message);

end;

This mechanism allows, for example, the
reliable release of previously reserved
areas of memory or objects – as is typical
of compilers, Object Pascal uses no
automatic memory management.

Borland has also added a few more
things to the Pascal language: ANSI-
strings increase the maximum length of
Pascal character strings from 255
characters and manage copies of these
same strings very efficiently (Copy-on-
Write). Unicode strings can be stored in a
WideString variable. The length of the
new dynamic arrays can be defined and
altered at run-time, if necessary with
checking for correct array-indices (by
range checks).

Variables of the variant type store
almost any other data type; This type
was really mainly introduced to support
COM/ ActiveX under Windows, but is
also available, slightly limited, in Kylix. In
Kylix, a variant cannot, understandably,
point to a COM-object.

One innovation which may be
controversial: Pointers no longer have to
be de-referenced with \^{ }, if the source
text nevertheless remains unequivocal;
this is certainly something to do with the
development that languages like Java
prefer memory management to
disappear completely into the
background - and pointers just do not fit
into this concept.

Object Pascal

058Kylix.qxd• 07.05.2001 10:29 Uhr Seite 63

Besides, Qt is a C++ library, which cannot be
used directly with the Kylix compiler - a C-wrapper is
needed, which repackages all the classes, methods
and functions of Qt into normal C-functions. These
C-functions can then be imported by a Kylix unit, so
that ultimately VisualCLX can use Qt.

This solution was certainly the fastest solution
for Borland to get Kylix ready for marketing, but it
also means that visual Kylix applications need more
memory and are dependent on countless libraries:
Starting with Kylix’s Qt-Interface-Unit libqtintf via
Qt2 itself and all sorts of X11 libraries to the C++
run-time library.

So it will be especially interesting to observe
how far Kylix applications will operate reasonably
under older or future Linux installations. To

complicate matters, Borland itself provides no
support for the creation of installation programs, as
is the case with Install Shield Express in Delphi.

Quo vadis Pascal?

Kylix is not completely free from competition under
Linux: Firstly, there is the C- and C++-compiler with
ever more powerful IDEs such as KDevelop.
Secondly, in the server field the importance of
compiler languages is certainly going to continue to
fall, when more and more special scripting
languages like PHP or highly-specialised visual
development environments succeed.

And finally, Borland should also keep an eye on
the field of classical programming: Kylix is certainly

COVER FEATURE KYLIX

64 LINUX MAGAZINE 9 · 2001

Interview with Jason Vokes, Director,
Rapid Application Development at Borland

Linux Magazine: What made Borland decide to develop
Kylix?
Jason Vokes: I regard the Linux operating system literally as a
golden opportunity to reach new developers. We began with
Delphi and ended up with a cross-platform system.
Linux Magazine: Borland wanted to introduce Kylix a year
after the announcement. The deadline was passed by about
six months. Why?
Jason Vokes: There were two main reasons for this. Firstly,
there was no rapid application development environment.
Under Windows, we were used to the tools and advantages
available there. Here we had to start with rudimentary things
such as gcc and gdb. Once our own debugger and our IDE
were available, productivity increased. The second point was
that the various Linux distributions all behave in different
ways. It took longer than planned to complete it.

Linux Magazine: Was the porting of the IDE with the aid of Libwine, which has now been
done, your second choice?
Jason Vokes: We originally only planned Delphi for Linux, but before we really started, we
noticed that the market needs more, namely a cross-platform environment. That’s why we
developed the component library CLX.
Linux Magazine: Is it your intention that the Kylix-IDE will one day also run with CLX? Is
there a specific deadline?
Jason Vokes: The use of Libwine was a time-to-market decision. We wanted to be fast. In
future there will of course be a complete CLX-IDE. It is only internally that there are precise
deadlines.
Linux Magazine: Have the stability problems with the IDE anything to do with Libwine?
Jason Vokes: These problems lie primarily with the Linux loader. Our developers have
suggested numerous fixes to the Linux community and sometimes also even done them
themselves. Many were adopted and are available and some have yet to penetrate the
Linux distributions. When they do, stability will improve. This has nothing to do with
Libwine.
Linux Magazine: When will the no-charge version of Kylix for the development of free
software be available?
Jason Vokes: By the middle of this year. We are not announcing a specific date at this time,
though.
Linux Magazine: Borland has made parts of CLX open source. Will there also be other
components, too?
Jason Vokes: No, there are no plans for that.

Jason Vokes

058Kylix.qxd• 07.05.2001 10:30 Uhr Seite 64

suitable for the creation of command line-based
tools, too, and the good editor and debugger are a
great help in this. Nevertheless, there is stiff
competition in this field with the two free projects
GNU Pascal and Free Pascal; in fact, the latter
provides not only compilers for several operating
systems, but overall comes with a considerably
broader palette of additional units and C-Header
conversions. It is only in the IDE field that Borland,
despite the said problems, has a clear advantage.

Prices and licences

Borland is demanding truly beefy prices for Kylix,
which are scarcely justified in comparison with the
markedly more stable and more complete Delphi:
Buying Desktop Developer would cost some £800 -
even though this version still lacks the full NetCLX
for developing network and Internet applications.
This is reserved for the Server Developer edition,
which costs twice as much at about £1600.

But Delphi offers considerably more in this price
class, for example support for ActiveX (Windows-
specific) or the not-insignificant CORBA
architecture, which could also be used under Linux
without any problem.

And yet Borland has announced that from the
summer a version which is free of charge (but not
free) - probably from the release for Desktop
Developer - will be on offer for the development of
free software under the GPL licence for download
(or on CD for about £80). CLX received a double
licence for this: Borland’s commercial No-Nonsense
Licence and the GPL. This could have far-reaching
consequences: Firstly, it is to be expected that a
flood of programs under GPL licence will crash in on
Linux. But it remains to be seen whether, in view of
the problems mentioned with library dependencies,
this will be a curse rather than a blessing. And on
the other hand many component developers who
want to port their products from Delphi onto Kylix
will also have to consider the use of such a double
licence if they want to build up a substantial
following of users.

Conclusion

Kylix is currently definitely the most comprehensive
software for rapid development of applications
(RAD) under Linux. It should give the operating
system a bit of impetus, because developing
applications has never been so simple. Ultimately
however, Kylix has to be described as a very hasty
porting of the old, familiar Delphi. The commercial
version is anything but refined, and a few extra
months for error corrections really would have
made all the difference.

The main aspects of Delphi can also be found in
Kylix, but behind the scenes the first version comes
across like a botch job, which becomes apparent
through the instabilities of the development

environment and some of the errors in the CLX run-
time library.

The frequent crashes of the IDE and the CLX
bugs are something Borland will eventually get to
grips with. It would certainly be very helpful if the
IDE was converted from Wine to CLX itself, but
VisualCLX still lacks some urgently required
capabilities to do this, such as support for dockable
windows.
But Borland should not take too long to come up
with these improvements, because the free IDEs for
C++ are getting better all the time and the teams of
GNU Pascal and Free Pascal are not sitting idle. One
major problem for Borland could be that the free
developer community will not restrict itself to
developing components and utilities for the
commercial product Kylix.
It will - because of the many Kylix bugs, but also on
principle - appreciate a free compiler and a free IDE
more. And Borland cannot simply release both, as
they are the essential foundation of the company’s
business. ■

The author
Sebastian G¸nther is technical
director of Areca Systems
GmbH in Munich, a service
provider involved with
networking, the Internet and
of course, Linux. For aesthetic
reasons he is a great fan of the
language Pascal for its own
sake and especially the
modernised variants. His first
contact with the Pascal
compilers of Borland was with
Turbo Pascal 5.5.

COVER FEATUREKYLIX

9 · 2001 LINUX MAGAZINE 65

058Kylix.qxd• 07.05.2001 10:30 Uhr Seite 65

