
Before we come to the basic elements, the co-
ordinate system used by OpenGL must first be
explained in more detail. This is a Cartesian co-
ordinate system.

The x and y-axes form a plane, something like
the visible surface of a monitor. The z-axis adds the
third dimension - spatial depth.

In the case of our monitor this would now be
the depth of the picture tube. A point P thus needs
three values (x,y,z) in order to have a fixed position
in our co-ordinate system.

Basic 3D elements

As demonstrated in the first part, the general
command structure of OpenGL in order to draw
something looks something like this:

glBegin(...);
glColor3f(..);
glVertex3f(...);
glColor3f(..);

glVertex3f(...);
...
glEnd();

glBegin(TYPE) tells the machine which basic
element (also referred to as a primitive) it should
draw from now on. A complete illustration of all
OpenGL primitives can be seen in Figure 2.

In OpenGL there are five different basic elements,
from which all objects must be composed. In detail,
these are points, lines, triangles, quadrangles and
polygons. Variations can be formed out of all these
elements (apart from points), mostly simple
continuations as the result of defining additional
vertices. So a simple triangle can turn into a so-called
TRIANGLE_STRIP or a quadrangle (GL_QUAD) can
become a QUAD_STRIP (see Figure 2).

This has the additional advantage that the
overlapping vertices in the composed element do
not have to be loaded into memory and calculated
twice. So if we want to draw four coherent
triangles, it is sufficient to specify six points - saving
three sides and six points.

Colours

A colour in OpenGL is normally based on the RGB
principle, thus it consists of the components Red,
Green and Blue. So all visible colours from Black to
White can be mixed.

Examples of OpenGL colours
Green: glColor3f(0.0f, 1.0f, 0.0f);
Violet: glColor3f(0.6f, 0.0f, 0.4f);
Black: glColor3f(0.0f, 0.0f, 0.0f);
Grey: glColor3f(0.4f, 0.4f, 0.4f);
White: glColor3f(1.0f, 1.0f, 1.0f);

The first example shows all 10 of the primitive types
mentioned above.

FEATURE OPENGL

22 LINUX MAGAZINE 9 · 2001

OpenGL Course: Part 2

POINTS,
LINES AND

POLYGONS
THOMAS G. E. RUGE, PABLO GUSSMANN

This part of the OpenGL

course firstly concerns the

basic graphical elements

from which 3D objects are

constructed. It will also

explain how the objects

created can be correctly lit.

Figure 1:
The Cartesian co-
ordinate system

022opengl.qxd• 07.05.2001 10:06 Uhr Seite 22

The second example from the last part of the course
serves as the basis for this. So it is again based on
GLUT, the OpenGL Utility Toolkit.

Let there be light

Objects such as the teapot from the first part consist
of triangles

or polygons. To make them look more realistic,
these must be lit and thus appear brighter or darker,
depending on the angle formed between them and
the source of light. OpenGL fortunately takes over
this part of the maths for us, but it still requires
additional information. And this is in the form of
normal vectors, thus a vector that stands vertically
to a surface.

Figure 3 shows an image of a normal vector on
an area. An area consists of at least three points.
The vectors u and v are the vectors from P1 to P2,
and P1 to P4 respectively. But it doesn’t matter
which point is used to form u and v, since if the
points are correctly oriented with respect to the
area, the normal vector is always the same.

The cross product

The normal vectors of an area can be calculated
using the cross product.

vNorm.x = u.y * v.z - u.z * v.y
vNorm.y = u.z * v.x - u.x * v.z
vNorm.z = u.x * v.y - u.y * v.x

So that the normal vector is also pointing in the
right direction, it is again necessary for the
sequence of points (P1, P2, P3...) which define the
area to be consistent.

But this leaves the normal vector still only half-
finished, because it still has to be standardised. This
is necessary to ensure that all normal vectors have
the same length. This then looks something like
this:

length = sqrt(vNorm.x * vNorm.x + vNorm.y * U
vNorm.y + vNorm.z vNorm.z)
vNorm.x /= length
vNorm.y /= length
vNorm.z /= length

This should, of course, not be calculated anew for
each frame because the computing time taken
would be enormous. These normal vectors should
be calculated just once at the start of the program,
because they do not change (in most cases).

Using glNormal3f(vNorm.x, vNorm.y, vNorm.z);
these values are transferred to OpenGL, so this is
just the same as with colour values.

Light in OpenGL

Of course, in order to show illumination with
normal vectors, you also need a source of light. For
this we need a few details about its position and

colour values (the light source need not, of course,
only give out white light). The following variables
contain the necessary values for the position of the
light source:

GLfloat LightPosition[] = \
{0.0, 0.0, -1.0, 1.0f };

The first three values specify the position and the
fourth is a sort of switch, which should stay at 1.0.

The next two variables contain the values for
the ambient and the diffuse components of the
light:

GLfloat LightAmbient[] = \
{0.2, 0.2f, 0.2f, 1.0f };
GLfloat LightDiffuse[] = \
{0.3f, 0.3f, 0.3f, 1.0f };
GLfloat LightSpecular[] = \
{.9f, .9f, .9f, 1.0f };

FEATUREOPENGL

9 · 2001 LINUX MAGAZINE 23

[left]
Figure 2: OpenGL
primitives

[right]
Figure 3: Normal
vectors

Listing 1, Primitives.c
The program is compiled with:

gcc -I . -c Primitives.c
gcc -o Primitives Primitives.o \
-L /usr/X11R6/lib/ -lGL -lglut -lGLU

The program is really very simple to explain: You can select the type of primitive using keys
1..9. This is done in the callback function (see Part 1) for drawing. Primitives are always
drawn with different colours. The case query in the keyboard callback sets the value for
the primitives in the variable draw_type, which is then queried in turn in callback for the
drawing. The following commands from the program draw a red triangle.

glBegin(GL_TRIANGLES);
glColor3f(1.0f, 0.0f, 0.0f);
glVertex3f(-100.0f, 0.0f, -100.0f);
glVertex3f(-100.0f, 100.0f, -100.0f);
glVertex3f(0.0f,100.0f, -100.0f);
glEnd();

Most routines have been taken over entirely or expanded from the last part of the course.
The program run has remained the same. During navigation it sometimes happens that
when surfaces are drawn they are not always visible. This happens if the surface is turned
away from the onlooker. Normally the sequence of vertices of polygons is defined
uniformly, clockwise or anticlockwise.

This is prevented by the command glPolygonMode(GL_FRONT_AND_BACK, GL_FILL).
So both sides of the polygons are declared as visible.

022opengl.qxd• 07.05.2001 10:06 Uhr Seite 23

Here, the first three values specify the Red Green
Blue (RGB) values at which the light should shine.

The ambient component of the light is the part
of the light that comes from no particular direction. It
arises, for example, when light falls into a space and
the rays strike everywhere and are reflected until they
are no longer coming from any definable direction
and are only present in the form of background light.

The diffuse portion of the light comes from a
specific direction and is reflected evenly over an area.
Areas which are tilted towards the light source appear
brighter than those turned away from the light.

The specular part of the light also comes, like
the diffuse part of the light, from one direction but
is reflected unevenly over an area. As the result of
this, bright spots of light are created on surfaces.

These values are now allocated as follows to the
light source GL_LIGHT0:

glLightfv(GL_LIGHT0, \
GL_AMBIENT, LightAmbient);
glLightfv(GL_LIGHT0, \
GL_DIFFUSE, LightDiffuse);

glLightfv(GL_LIGHT0, \
GL_SPECULAR, LightSpecular);
glLightfv(GL_LIGHT0, \
GL_POSITION, LightPosition);

Using

glEnable(GL_LIGHT0);

the light source and with

glEnable(GL_LIGHTING);

the lighting calculation are started by OpenGL. Now
the area no longer appears just in the full colour, but
brighter or darker, depending on how they stand with
respect to the light. OpenGL provides a maximum of
eight light sources. These can have different colours
and positions and be switched on or off.

So that the light source also works on coloured
areas (only very few are white), OpenGL still has to
be instructed on how to apply the light calculation
to the colour values of areas.

glEnable (GL_COLOR_MATERIAL);
glColorMaterial (GL_FRONT_AND_BACK, GL_AMBIU
ENT_AND_DIFFUSE);

Below is a short sample program, which draws,
lights and rotates a dice made of GL_QUADS. Using
‘l’ and ‘o’ the light source can be turned on and off.
Rotation can also be modified: ‘s’ for stop and ‘g’ to
continue rotating. ■

FEATURE OPENGL

24 LINUX MAGAZINE 9 · 2001

Vector
Forwards: glNormal3f(0.0f, 0.0f, 1.0f);
Backwards: glNormal3f(0.0f, 0.0f, -1.0f);
Right: glNormal3f(1.0f, 0.0f, 0.0f);
Left: glNormal3f(-1.0f, 0.0f, 0.0f);
Up: glNormal3f(0.0f, 1.0f, 0.0f);
Down: glNormal3f(0.0f, -1.0f, 0.0f);

Info

OpenGL-Homepage:
http://www.opengl.org

OpenGL and GLUT
information:

http://www.xmission.com/~nat
e/opengl.html

■

Listing 2, Light.c
The program is compiled with:

gcc -I . -c Light.c
gcc -o Light Light.o \
-lGL -lglut -lGLU

The sample program draws an illuminated dice and rotates it. The light source is situated behind the
(transparent) onlooker and lights the dice from the front. It is easy to see how the areas become
bright and dark. The code for the set up of the light sources and of the lighting, as described above,
is in myInit(). Firstly, values are defined for the position and the properties of the light source and
then they are assigned to the light source. The dice is now drawn in DrawScene(). But first the
representational matrix is created and translated backwards using:

glTranslatef(0.0f, 0.0f, -5.0f);

and then rotated

glRotatef(rtri,.0f,1.0f,0.0f);
rtri+= .1f;

The dice consists of 6 GL_QUADS and is so simple that normal vectors do not have to be calculated on
a large scale. These are simple vectors, which point forwards, backwards, right, left, up and down:

Each GL_QUAD is assigned a different colour, so that the sides are easy to distinguish. Obviously,
a dice is not exactly a complex object, but one with 20,000 polygons would be beyond the scope of
any printer. The dice serves as the basis and can be expanded with a bit of effort. But the calculation
of the normal vectors should not necessarily be undertaken manually, but automated. That’s
something we will come to in a later installment of this course.

The plan for the next part is an explanation of the world of matrices in more detail. Then it will be
possible to program more complex procedures than a mere dice rotating about its own axis.

022opengl.qxd• 07.05.2001 10:06 Uhr Seite 24

