
On Linux systems, root privileges are necessary
for many actions. Unfortunately, there are no
further restrictions for root, so an intruder can
simply read everything, write everything, delete
everything. When, instead of the system
administrator, an intruder gains your root privileges,
he can also do everything: read private e-mails,
swap programs, install back doors, wipe away his
own tracks and obtain all and any information from
the system.

With LIDS, files and directories can also be
protected from root, so his omnipotence is at an
end. You can define the access rights to files more
precisely (ACLs, Access Control Lists). Also, via
capabilities, you can allow individual programs to
do things which really require root privileges. For
example a process for opening a port under 1024
really requires root privileges. With the appropriate
capability this can also be done without root.

Issuing access rights with ACLs

Being able to protect files from root is certainly
a useful thing. But for your Linux to continue to
function as it ought to, you can give back individual
programs writing and reading rights. For example
LIDS hides the file /etc/shadow from all users, but
explicitly allows /bin/login to read this file.

The first step makes sense, since passwords can
be cracked with the aid of the shadow file. But
without any access to this file, no user can log in
now, as /bin/login can no longer check the
password entered.

In fact, you ought to have made an exception:
Without write access to /etc/shadow no user can
change his password.

At first glance, this appears perfectly simple,
you could indeed give the program /usr/bin/passwd
write access to the shadow file. In this case, though,
root could again change all the passwords. But
since in LIDS we are assuming there is an attacker,
we ought to exclude this possibility.

LIDS also has a solution for this, the LIDS free
session (LFS). An LFS applies to the current terminal
and all programs started from it. In an LFS, the LIDS
restrictions do not apply. Since LFS only starts after
you enter the lidsadm password, only the sysadmin
could change the passwords. If there are no users
on the system apart from the admin, this is a more
feasible way.

FEATURE SECURITY

24 LINUX MAGAZINE 10 · 2001

LIDS is just its name
You may be wondering why the whole thing is called Intrusion Detection.
There were certainly some long discussions about this name, but after all,
the primary objective of LIDS is not to spot break-ins, but to protect the
system after a break-in. Nevertheless there are a few mechanisms aimed at
recognition. When a LIDS rule is violated, LIDS closes not only the shell,
from which the rule was violated: LIDS can also inform the administrator,
say via e-mail. Also, LIDS offers a portscan detector in the kernel, although
this is far from being as refined as Port Sentry.

When an attacker gains Linux root privileges, simple tools won’t fend them

off. LIDS offers methods to deny the intruder sight of and access to

important parts of the system.

The Linux Intrusion
Detection System (LIDS)

ROOTING
OUT

ATTACKS
DAVID SPREEN

FEATURESECURITY

10 · 2001 LINUX MAGAZINE 25

But if several people have access, you will have
to choose between comfort for the user and
reinforced security.

For which systems does LIDS
actually make sense?

LIDS is designed to prevent the overwriting of
important parts of a system. It therefore makes little
sense to use LIDS on a system which is changed
daily, unlike production systems with individual
services, which are installed once, then run in a
stable environment. Playing with a bugfix or an
update from time to time is not a problem, but
automatic upgrades like Apt-get from Debian will
not get along with LIDS.

A Linux with a 2.2.x kernel is recommended.
There is also a LIDS for the Linux kernel 2.4, but as a
rule the use of a kernel under x.x.10 is not
advisable. Also, LIDS is still in development, so you
should keep an eye open for updates at regular
intervals.

Installation of LIDS

A kernel patch and the administration programs
are available as .tar.gz archives at
http://www.lids.org. Once the packet for the
corresponding kernel version has been downloaded
and unpacked, change to the directory
/usr/src/linux. The patch is applied from here, with

patch -p1 .../lids-version.patch

after which the kernel is configured.

To obtain the LIDS options as a selection the
following items must be selected:

[*] Prompt for development and/or
incomplete code/drivers

[*] Sysctl Support

Now you can configure and compile your LIDS
kernel.

Next the lidsadm tool needs to be compiled.
You will find the sub-directory lidsadm-version in
the LIDS package. Before you type make in there,
however, in version 0.9.12 a minor change needs to
be made to the Makefile: Complete the line
CFLAGS=... with the entry -DLIDS_CONFIG. Now
call up make && make install, to compile and install
the program.

Before first booting with the new kernel you
must set a LIDS password and synchronize the
configuration with your computer. The LIDS
password is set using lidsadm -P. It will be needed
later to deactivate LIDS or to change to an LFS. If
you should start with the LIDS kernel, without first
having set a password, the attempt will end with a
kernel panic.

We had already addressed the ACLs. These are
stored in the file /etc/ lids/lids.conf; but in addition
to the file and directory names, there are also Inode
numbers entered there. The Inode numbers next to
the file names are comparable to an address for the
files.

Since file system accesses can occur, not via the
file names, but also via Inode numbers, LIDS
obviously has to know the numbers of the files to
be protected. For the ACLs which were preinstalled
with the LIDS package to fit into your system,

New versions of LIDS

While working on this article, more
recent versions of LIDS have come into
being. But their syntax is incompatible
with the older ones and nor are they
adequately documented, but on the
other hand it is more consistent per se.
This article is mainly concerned with the
old versions: 0.9.13 for kernel 2.2.18 and
1.0.5 for kernel 2.4.1. But by reading the
source code and with the aid of the LIDS
mailing lists I have still been able to make
some amendments to the text in time.

update the Inode numbers with lidsadm -U.
The ACLs, which relate to files and directories,

are active as soon as the kernel loads the LIDS
system. On the other hand the ACLs which deal
with the capabilities only becomes active the first
time when lidsadm -I is executed. So you must
ensure, too, that this occurs immediately on
booting.

Decide precisely when you want the capability
rules to be made active: For example it makes sense
only to make these take hold after activating the
firewall, if the firewall makes use of capabilities
which you want to block.

You must complete the configuration before
you boot the system with the new kernel, so that
the machine is actually still usable when it next
starts. If your computer ever becomes unusable as
the result of LIDS rules, when booting, assign LILO
the parameter security=0.

Configuration

New rules are added with lidsadm. For a file rule
the lidsadm command looks like this:

lidsadm -s /path/program -oU
/path/file,directory -j RULE

The syntax is a bit like that of Ipchains. The

option -s assigns the subject of the rule, the option
-o the object. If the subject (here, a program) wants
to access the object (file, directory or capability), the
ACL (or to be more precise: by means of the rule
assigned with -j) governs whether and how the
subject can gain access.

The following call up allows /bin/login read
access to /etc/shadow:

/sbin/lidsadm -s /bin/login -o /etc/shadowU
-j READ

To make /etc/shadow unreadable for all, the
following call up would be necessary:

/sbin/lidsadm -o /etc/shadow -j DENY

Further rules can be found on the Lidsadm
manpage. Why LIDS works for any number of file
systems, not just for Ext2, is explained in the box
“LIDS and VFS”.

Capabilities

Since kernel 2.2.x the Linux kernel has had a
sort of access control of its own — capabilities. For
certain actions, tasks need more privileges than a
normal user has. Instead of the all-or-nothing
division between root and normal user, there are
more finely subdivided authorisations. For example

Figure 2: In step 1 Insmod wants to
access the Module_loader. Firstly the

kernel checks, in step 2, whether
Insmod has the capability

CAP_SYS_MODULES, and only then,
in step 3, allows the sub-module to

be loaded.

FEATURE SECURITY

26 LINUX MAGAZINE 10 · 2001

LIDS and VFS

LIDS sits on the VFS layer. Linux is designed so as to be able to work
with many different file systems. The VFS layer is a general
interface for all file systems supported in the kernel. If there is now
access to the file system, the system-call interface does not access
the individual file system directly, but forwards this query — or put
in simplified terms — to the VFS. In reality, the device driver
subsystem also plays a role in this. Figure 1 shows the principle;
details on this can be found at http://plg.uwaterloo.ca/
~itbowman/CS746G/a2

Figure 1: The system-call interface
(the file system interface available
for user processes) does not access
the individual file system, but its
common interface, the VFS.

Interface

System Call

VFS - Virtual Filesystem
common code

vfat

ext ext2

proc

nfs smbfs

the loading and removal of modules requires the
capability CAP_SYS_ MODULES, insmod thus needs
precisely this capability (see Figure 2).

In the Linux standard kernel, it is not possible to
assign a program file any capabilities, as there is no
support in the file system. Capabilities can only be
given to or taken from a current process. The kernel
does, however, check the capabilities; this is
resolved by root processes automatically receiving
all capabilities. To take a capability away from a root
program, it has to be removed globally from the
system.

LIDS, on the other hand, offers the option of
giving to and taking from each program capabilities
individually, regardless of whether it has root
privileges or not. /etc/lids/lids.cap defines which
capabilities are available by default and which are
only issued by special regulations in the ACLs. So for
example the Apache web server can be assigned the
capability CAP_NET_BIND_ SERVICE, so that it can
occupy a port smaller than 1024, although this
capability was globally deactivated. This example
requires the following command:

/sbin/lidsadm -s /usr/sbin/httpd -t -oU
CAP_NET_BIND_SERVICE -j INHERIT

The option -t says that the object of this rule is a
capability. The rule INHERIT determines that the
capability is also inherited by child processes of
/usr/sbin/httpd. The opposite would beNO_INHERIT.
An overview of the capabilities relevant to LIDS can
be found in the Lidsadm-manpage.

From version 0.9.14-2.2.18 or 1.0.6-2.4.2
respectively, the syntax of lidsadm has changed
slightly. Here the call would look like this:

/sbin/lidsadm -s /usr/sbin/httpd -i -1 -oU
CAP_NET_BIND_SERVICE -j GRANT

The options -s and -o still assign subject and
object to the ACL. The option -t is dropped and the
rules INHERIT and NO_INHERIT also cease to apply.
Instead of these, in capabilities the rules GRANT is
assigned so as to allocate it to the subject. The
option -i -1 means that the child processes of the
httpd also receive the capability.

What’s new is the option of defining the depth
of the inheritance. While -i -1 means infinitely deep
inheritance, with -i 1 the capability would still be
inherited by the child processes of the httpd, but
would no longer by its children (thus the
grandchildren). To prevent inheritance completely,
specify -i 0 or leave out the option -i completely.

Hidden Processes

With the methods proposed so far, you can
certainly make life difficult for an intruder. In the
real world, though, one would leave him tapping in
the dark for as long as possible. A firewall can effect
this very well outwardly, for example by concealing
the inner network structure.

LIDS causes the same effects inside a computer:
Processes are hidden, if the program is given the
capability CAP_HIDDEN:

/sbin/lidsadm -s /usr/sbin/popper -t -oU
CAP_HIDDEN -j INHERIT

The result of this example, as you have surely
already discovered, is that /usr /sbin/popper can no
longer be seen in process lists such as ps and top.

Here, too, the call in the newer versions of
lidsadm looks somewhat different:

/sbin/lidsadm -s /usr/sbin/popper -i -1 -oU
CAP_HIDDEN -j GRANT

Switching LIDS

Hiding processes, granting or refusing capabilities,
restricting file accesses even for root — all with the
aim of making life harder for an intruder.
Unfortunately, however, this also makes one’s own
work harder: Sometimes one has to change some-
thing, as legitimate admin, simply and quickly, a route
or a gateway, or changes need making to the firewall.
For these cases there is the LFS (LIDS Free Session), in
which you can again work as normal. With the aid of
the LIDS password a terminal can be released from the
LIDS controls. The command for this reads:

/sbin/lidsadm -S —- -LIDS

But if a service is to be started from new or even
a restart is imminent, then even the LFS is no longer
adequate. At this point the actions are no longer
under the control of the one released shell, so we
must first completely deactivate LIDS. The following
command does this:

/sbin/lidsadm -S —- -LIDS_GLOBAL

To load in an altered LIDS configuration from
new while LIDS is active, call up the following:

/sbin/lidsadm -S —- -RELOAD_CONF

LIDS should serve the majority of its time
without needing much changing. We hope this
article has given you a basic look at the methods
and operation of LIDS. Nevertheless, you should
certainly look for advice on configuration in both
the Lidsadm-manpage and the LIDS-FAQ, so that
your Linux does not suddenly regard you as the
enemy and deny you entry. ■

The author

David Spreen is the Debian
maintainer of the LIDS
packages. Apart from
studying, he also works for
NetUSE AG, an ISP in Kiel. And
spends most of the rest of his
time on his Linuxbox or
programming. He would like
to thank, among others,
Benjamin Traube and Eugene
A. Brin..

Info
Brian Ward & Peter Sütterlin: Linux kernel HOWTO:
http://www.tu-harburg.de/dlhp/HOWTO/DE-kernel-HOWTO.html
Ivan Bowman, Saheem Siddiqi & Meyer C. Tanuan: Concrete Architecture of the
Linux kernel: http://plg.uwaterloo.ca/~itbowman/CS746G/a2
Steve Bremer: LIDS FAQ: http://www.clublinux.org/lids/
Port Sentry: http://www.psionic.com/abacus/portsentry/

■

FEATURESECURITY

10 · 2001 LINUX MAGAZINE 27

