
FEATURE RUBY

14 LINUX MAGAZINE 10 · 2001

From Japan, the Land of the Rising Sun, comes a
new star in the sky of script languages. But does the
world need a new script language? After all, there
are already established ones such as Perl, Python, Tcl
and many more. Ruby is a new attempt to produce
a well-thought-out and object-oriented script
language, which is easy to use.

Since it is very recent, there are not yet as many
libraries available as there are for Perl or Python, and
yet it is already usable for many purposes. This
article introduces the concepts by means of a few
examples and shows how compact and yet neatly
structured Ruby can be.

Jack of all languages?

Ruby was developed between 1993 and 1995
by Yukihiro (Matz) Matsumoto in Japan; Perl 4 and
Python already existed. While Python is a hybrid
language with functions for procedural
programming and with objects for OO-
programming, Ruby is purely object-oriented: There
are no functions, just methods — and everything is
an object. There is a substitute, though, for

functions: A method defined outside a class turns
into a private method of the main class Object, as
the result of which it becomes available globally.

The syntax and the design philosophy are
heavily based on Perl, so there are statement
modifiers (if, unless, while and others), integral
regular expressions, special variables such as $_ and
the difference between “...” and ‘...’ strings. Ruby
thus helps itself to various programming languages
and combines them into a new one.

Unlike Perl, $,@ and % do not refer to different
types of data, but to the scope of a variable: Normal
variables can manage perfectly well without
characters such as $, % or @, $var refers to a global
variable of any type and @var an instance variable
of any type in an object. There are no semicolons at
the end of the characters in Ruby programs.

Object-oriented

As with all OO-languages, there are also
practical standard classes available in Ruby, which
are easy to use. Of course you can also define
classes yourself, including inheritance and private,

Object-oriented script language, Ruby

RED STAR
TJABO KLOPPENBURG

Ruby is an object-oriented script language, which has won itself a place

among the established languages Perl, Python and maybe PHP, too. Ruby, a

development from Japan, also has a certain entertainment value, which

makes getting started that much easier.

FEATURERUBY

10 · 2001 LINUX MAGAZINE 15

protected
and public

methods. But the
object orientation of Ruby

goes a bit further, so to cut a
long story short, everything that can

be modified is an instance of a class (or
else a reference thereto).
This also applies even to completely ordinary

figures, so for example -42 is an instance of the
integer class and thus also has access to the
methods defined in the integer class. As the result
of this object orientation, which extends as far as
the basic elements, one obtains information about a
number or a string, not through a function such as
sizeof(scalar) or int2str(int), but direct from the
object, in fact through one of its methods.

For example, in order to obtain the string
representation of 42, you can call up the method
42.to_s. This is, of course, a banal example, but the
(overwritable) method .to_s is already defined in the
class Object, the mother of all classes, and thus
available in absolutely every class — including its
own.

As well as the usual class and instance methods,
Ruby offers the option of using so-called iterators.
These are methods which iterate via the individual
elements of an object container, thus via the
elements of an array, a hash, the lines in a text file
or again, its own container class.

Even the integer class, itself not actually a
container, has the use of helpful iterators such as
.upto(num) or .downto(num), which iterate starting
from the object in steps of one to num. In this case
the iterator is given a block of functions, which are
called up in sequence for each element.

To show how this works, let’s take a look at a
small sample of code, where the .upto iterator of
integers is put to use to create an output for the
numbers from one to ten:

#!/usr/bin/ruby
Max = 10 # constant
1.upto(Max) do
|i| # iterated element
print “#{i} ̂ 2 = “, i*i, “\n”
end

In the first line we define a constant Max, whose
name begins with a capital letter, .upto is the iterator
already mentioned, which in this case iterates from 1
to Max. do and end include the code block which is
transferred to the iterator. Alternatively the block
can also be bracketed with { and }. |i| assigns the
element of the current iteration to the variable i, the
print line finally outputs i and i*i.

Bear in mind that normal variables have to start
with a lower-case letter and constants with a capital
letter. If there is an objection on the tip of your
tongue, that for is much more universal, I admit it,
you’re right. But since in nine out of ten cases an
increment of one is being counted up or down, the
upto method (and downto, step and others) is a
genuine advantage.

As we are about to see from a somewhat more
complex example, iterators also in many other cases
allow for highly efficient programming. But first take
a look at the line Max = 10. We need to visualise
once more the idea that in this case the 10 is not
simply a ten, but an instance of the integer class.

The assignment operator creates a new instance
and then Max assigns a reference to this. Let’s look
at a somewhat more realistic problem: You want to
rename all the files in the current directory ending in
.MP3, so that they end in .mp3 . Since the mv
command from Linux is little use in this everyday
problem (unless you speak fluent Bash), we shall
build our own script in Ruby.

The task: One has a directory, wants to read out
the content and, depending on the state of the
entry, rename the file. While in Perl one has to tussle
with functions such as opendir and readdir, the
problem can be solved in Ruby exactly as we have
formulated it: One takes a Dir object, allows the
entries to be assigned and renames files as
appropriate.

So now look at the following code:

Dir.open(“.”).entries.each do
|entry|
new = entry.gsub(/\.MP3$/, “.mp3”);
File.rename(entry,new) if new != entry
end

This is of course really easy to understand:
Dir.open provides a new instance of the class Dir,
which we do not assign to a variable, but re-use
immediately. The entries method of the Dir instance
provides an array with all directory entries in the
form of string objects, and lastly each is the
standard iterator over all elements of a container
(here: arrays). All elements of the array land one
after another in the variable entry. The string
method gsub replaces .MP3 with .mp3 and the
result lands in the variable new. The last line finally
uses the class method rename of the class file, to
undertake any renaming which may be necessary.

Class methods, unlike instance methods, can be
called up without an existing instance of a class. The
attached if expr is a construct familiar from Perl,

which sometimes makes your hair stand on end. It
would of course have been possible to use a normal
three-line construct if, Commands, end, but the
notation selected is often clearer especially with
single-line if blocks.

Even if the example may have appeared rather
odd at first, realisation is very much in line with how
one thinks — and one becomes accustomed
correspondingly rapidly to this type of
programming. Another option worth mentioning
here is that of passing small programs on the fly
with the -e ̀ ...`parameter to the interpreter. But in
that case the individual commands must be
separated by semi-colons.

Your own classes

Now that we have seen how standard classes
and iterators are used in two simple examples, we
will now look at how you can define your own
classes and later iterators in Ruby.

In order to also to show more specialised
properties of classes in Ruby, we shall look at the
implementation of a class whose instances can
include three stable conditions: the Tribble class.
Why none of the common languages has come up
with this sort of data type is remarkable in itself.

Such classes are not actually in any way absurd, as
one can for example use a class and the conditions
should, must and either/or really well to express the
wishes of a customer with respect to an article — in
order to then to seek out the most suitable thing for
precisely this customer.

Or how would it be for example with a class
that helps us by using the conditions yes, no and ye-
no in making difficult decisions? We will next define
a general class Tribble, from which we will then, for
test purposes, derive the class YNTribble, which will
help us to make decisions. Look at Listing 1 for a
first simple class Tribble.

The name of the class must begin with a
capital letter. A method is defined using def,
initialize is the reserved name for the constructor.
This is where we make the instance variable
@conditions (options) and @condition (actual
condition), which can be accessed by all methods
within an instance.

The method setValues serves to define the
possible conditions of the Tribble. This method is
protected, so that it can only be used in Tribble and
derived classes. .get serves to read out the current
condition, .set(value) sets the current condition. In
.get there is no return, as it can be left out, since the
value of the last expression is automatically the
return value of the method.

The third method finally defines the ==
operator for the Tribble class: If the condition of
one of the Tribbles is nil, then the result is also nil,
otherwise the conditions of the two Tribbles
involved are compared and returned as the results
true or false.

The .nil? method is defined in the class Object
and only comes back with true if the object whose
nil? method is being called is nil. In other words: A
variable is never undefined, but at least an instance
of the nil class.

To have one applicable class to play with, we
shall derive from Tribble the new class YNTribble,
which makes life easier for us with analytical
functions. The new class is to have the functionality
of the Tribble class and be able to include the
conditions yes, no and ye-no.

In Ruby a class can in each case only inherit one
other class. To make additional methods available in
a class, modules can be integrated which are
defined outside the class. In our new class (Listing 2)
we define a new constructor, which calls up the
constructor of the parent class and defines the
possible conditions of instances of our class. It is
possible here to specify a start condition as an
option, the default is yes.

Also, we define a new operator +, which links
two instances of YNTribble and depending on the
conditions, comes up with a new YNTribble
instance. The logic can be accommodated in three
lines, by using statement modifiers: If two Tribbles
to be compared, the result is yes, yes + no turns into
ye-no and the rest becomes no.

FEATURE RUBY

16 LINUX MAGAZINE 10 · 2001

Listing 1: The Tribble class

class Tribble # Start with a capital letter!
def initialize # constructor
@conditions = Array.new # possible conditions
@condition = nil # default-condition
end

def setValues(arr) # enter permitted values
if (arr.type.to_s == “Array”)
arr.uniq! # kill duplicated elements
@condition = arr if arr.size == 3
end
end
protected :setValues

def get # method, read out condition
@condition
end

def set(new) # method, set condition

@condition = new if@conditions include?(new)
end

def ==(other) # comparison operator
return nil if get.nil? or other.get.nil?
@condition == other.get

end
end

This means there is now a useable Tribble class
available for first tests. To do this, we instance the
YNTribble twice and compare the contents of the
objects:

t1 = YNTribble.new(“yes”)
t2 = YNTribble.new(“no”)
print “comparison”, t1 == t2, “\n”

print “yes + no = “
t3 = t1 + t2 # yes + no = ?
puts t3.get

The output is:

Comparison: false
yes + no = ye-no

Obviously, since yes + no now produces a
crystal-clear ye-no, what else. The instruction puts
outputs the transferred string followed by \n.

Home-made iterators

Where, then, are the promised iterators? Well,
we shall build ourselves a container for YNTribbles,
HTArray, with an iterator each, which can iterate via
all elements (Tribbles), without bothering the user
with tedious details about the internal storage of
the Tribbles. Also, both methods integrate
add(object) and get(num) to roll in or read out
Tribbles.

Listing 3 shows a simple implementation which
would not only roll in Tribbles (arrays can store any
objects) and which in this case could actually be
replaced by a normal array. But using one’s own
class with iterators does have the advantage that
later we could change the in-class realisation of the
storage without any problem, while the interface
remained the same externally.

FEATURERUBY

10 · 2001 LINUX MAGAZINE 17

Listing 2: YNTribble — The defined Ye-no

class YNTribble < Tribble # inherits all methods
def initialize(condition=”yes”) # optional default value
super() # calls up the method of the parent class.
setValues([“yes”, “no”, “ye-no”]) # Array on the fly...
@condition = condition if@conditions.include?(condition)
end

def +(other) # a self-defined operator: t2 = t1 + t2
return YNTribble.new(“yes”) if (@condition == “yes”) and (other.get ==

“yes”)
return YNTribble.new(“ye-no”) if (@condition == “yes”) or (other.get ==

“yes”)
return YNTribble.new(“no”) end

end

The definition of the iterator method is
relatively simple: One writes a method, which
takes all the stored objects by the hand in turn
and passes them on to the yield command.
When an iterator is used, then for each object
the transferred code block stands in for the
yield, where the parameters of the yield
commands land in the variable specified in |...|.

Listing 3 shows one possible implementation
of HTArray with an .each iterator. You can try
out the HTArray with the following snippet of
code. If you have saved the listings for YNTribble
and HTArray in individual files, you must
integrate the class definitions using require:

require `yntribble.rb’
require `htarray.rb’

ha = HTArray.new
ha.add(YNTribble.new(“yes”))
ha.add(YNTribble.new(“ye-no”))
ha.add(YNTribble.new(“no”))
print “Compare `yes’ with all values:\n”
ha.each {
|t| # yield tribble, tribble -> t
print ((t +
YNTribble.new(“yes”)).get,“\n”)
}

Previously, we left off the brackets from
print, but as soon as the expressions after print
become complicated, you should include the
brackets, so that the interpreter knows which
part of the text after print is a parameter for the
call. In case of doubt, ambiguous points in the
source code can be displayed with the aid of
ruby -w.

Controlled exceptions:
Exceptions

When interpreting Ruby programs, it is possible
for type conversions to fail (if, unexpectedly, a
variable turns out to be nil) or a file to be read out is
not available. In these exceptional situations the
interpreter raises up so-called exceptions, which are
also familiar from Java and C++.

If one does not catch an exception oneself, the
program automatically shuts down. But this is not
necessarily in one’s own best interests, as this can
result, for example, in painstakingly calculated
figures or tedious user inputs being lost. Therefore,
exceptions can be caught in the program, so as to
react appropriately. The following small example
reacts, when storing a result, to the problem that
the file is not writeable from time to time. This
effect sometimes occurs if one starts a program
from the home directory of another user, who has
hard-wired the name of the destination file.

Exceptions are caught using begin /rescue/end:

resfile = “/home/root/.result”
begin
file = File.open(resfile, “w”)
save data
rescue
puts “error!”
print “Specify a writeable “
print “file for the results: “
resfile = STDIN.gets
retry # agaaaain!
ensure
file.close # close file
end

If resfile is not writeable, File.open(...,”w”) raises
a corresponding exception. rescue catches it — and
we try to get round the problem: The user is
challenged to enter a new file name, which will be
read in via STDIN.gets. The effect of retry is that the
critical block will run through one more time. In this
example this could go round in circles forever, until
the user finally specifies the name of a writeable file.
The code after ensure will in any case be executed. If
one uses ensure and rescue, rescue must appear first.

Catching exceptions is one thing — but of
course, one can also raise exceptions oneself. This is
done simply via the command raise, to which a
descriptive string is given. This can then be read out
via $! in the exception treatment:

begin
raise “unexpected error”
rescue
print “Exception!: “, $!, “\n”
print “(“,$!.type,”)\n”
end

Exceptions are instances of exception classes,
which are all derived from Exception. These in turn
are children of the parent of all objects (Object) and
thus can use the method .type, with which the

FEATURE RUBY

18 LINUX MAGAZINE 10 · 2001

Listing 3: An array made of Tribbles

class HTArray
def initialize
@arr = Array.new # Data in array
end

def add(tribble) # attach tribble
@arr.push(tribble)
end

def get (num) # read out tribble
@arr[num]
end

def each # Iterator over all tribbles
@arr.each {

|tribble|
yield tribble # call up block with tribble

}
end
end

name of the class of an instance can be read out. So
we can find out the type of exception in the
exception treatment:

begin
a = 1 / 0
rescue
print $!.type, “ : “, $!, “\n”
end

In the first example it still looked as if $! was
simply a string. But it is obviously a class instance
and print has somehow called up an appropriate
method from $!, in order to display the string. We
should now no longer be surprised that this is the
standard method .to_s.

Graphical Allsorts

In case the properties described thus far have
given the impression that Ruby is purely a console
language — this is not so. Ruby has integral support
for Tk, with which an expert programmer can at
least quickly knit himself some simple GUIs.

Unfortunately there is no proper graphical snap-
on GUI tool yet, although there is already an
interface to Glade, the Gtk GUI builder. And, of
course, a direct interface to Gtk+, which can be
found at www.ruby-lang.org/gtk/en complete with
documentation.

For programming Tk you should in any case
take a look in the obligatory reading for Ruby, for
example the downloadable online version of the
just-published book “Programming Ruby” .

All about Ruby online

The fairly-expensive printed book is available in
English. It is very up-to-date, which sadly cannot
necessarily always be said about the official
reference documentation. Ruby is after all a
Japanese development and any current
documentation usually comes out first in Japanese,
and then with a bit of luck is translated into English.

Even the XML sources of the book are available.
The XML code is hideous, though, as confirmed by
one of the authors, who extracted the XML code
from TeX code. Nevertheless it is possible to patch
together very passable brief references from the
XML files or adapt the layout of the book to one’s
own preferences. Unfortunately the appropriate
XSLT code for the conversion does not come with
the book — this is something you will have to think
out for yourself.

For example, you could use the class xmlparser
or one of the other XML expansions found in the
Ruby Application Archive or at Ruby Mine. When
doing so it is often advisable not to follow the
download link immediately, but to look for a more
recent version on the homepage of the respective
expansion, since every author updates his
homepage first.

For the rest — it’s written in the
book

This brings us to the end of the article. One or
two things have not yet been addressed — for
example threads - since this article is not intended
to be a substitute for a book. Information about
threads and about the testing of Ruby can of course
be found in the online book mentioned and maybe
also in diverse other online documents, which any
good search engine should be able to find on the
Net.

An up-to-date reference can be obtained via the
tool ri, which can be had from the Application
Archive. The call ri File for example spits out all
methods of the file class. The console single-liner
ruby -e ̀ puts file .methods.join(“\n”) does just that
too, but without any further explanations. The
English Ruby mailing list is also good for additional
information (info on the Ruby homepage). Anyone
who reads this will gain an overview on the latest
developments and can even take part in further
development, as “Matz” Matsumoto makes
enquiries in the ML before making any changes.

Finally, flat-rate and other hard-core surfers can
also set a course for the channel #ruby-lang in the
IRC via the server irc.openprojects.net, in which
there are always a few Ruby enthusiasts, including
the authors of the online book.

Anyone who wants to go further with Ruby
should in any case read up on the difference
between code blocks of iterators and the code
within while, until and if — and which of the
variables can be changed locally and which cannot.

Have fun. ■

The author

Tjabo Kloppenburg is, strictly speaking,
studying electrical and electronic engineering
at the Uni of Siegen, although he has tended to
specialise in IT. Is there anything nicer than a bit
of DIY with IT scripts? He thinks not.

FEATURERUBY

10 · 2001 LINUX MAGAZINE 19

Info
Which language is better?: http://www.perl.com/pub/2000/12/advocacy.html
Ruby homepage: http://www.ruby-lang.org/en/
Thomas, Hunt, Matsumoto: programming Ruby; Addison-Wesley; ISBN
0201710897
Online version of the book: http://www.pragmaticprogrammer.com/ruby/
ruby-gtk: http://www.ruby-lang.org/gtk/en/
Ruby Application Archive: http://www.ruby-lang.org/en/raa.html
Ruby Mine: http://www.ale.cx/mine/raa.html
Ruby-FAQ: http://www.ruby-lang.org/
Open Directory Project:
http://www.dmoz.org/Computers/programing/Languages/Ruby

■

