
Rescue diskettes are as common as sand on the
beach. But they all have a whole series of
drawbacks. They are always too small, slow and
error-prone. And with fairly modern PCs, they are
no longer needed now that it is possible to boot
direct from CD. So what could be more obvious
than to make your own bootable Linux CD?

Those who are saying, but such a thing already
exists, are of course right (see Info box). But often
these CDs are lacking one very special, absolutely
vital program. There are other reasons for making

your own CD. Such CDs are ideal for presentations,
training courses, kiosk systems. Or to proudly show
off to your best mate your own brand new KDE
installation on his computer.

This article presents a procedure which is easy to
use and with whose help, at very little effort, a
functioning Linux installation can be transferred
onto a bootable CD. The first paragraphs below,
though, bring you some theory about the boot
procedure itself, but are of interest anyway
regardless of the topic. On this basis, there follows a
description of how to use the build system to create
bootable CDs.

All beginnings are easy – the
boot procedure
After switching on the computer, it looks in the
places defined in the Bios for executable code.
Normally these are the diskette, the CD-ROM drive
and the first hard disk. This executable code is very
simple, since at this time there are no operating
system resources available, in particular no file
system. Its task is to load and to start the operating
system kernel.

This simple code is also contained in the Linux
kernel, hence you can copy the kernel directly onto
a diskette (dd if=bzImage of=/dev/fd0) and start it
from there. The kernel then initialises all the
subsystems and starts the program file /sbin/init on
the root partition (to be precise, the following files
are sought in this order: /sbin/init, /etc/init, /bin/init
and /bin/sh).

KNOW HOW BOOT CDS

46 LINUX MAGAZINE 11 · 2001

Creating boot CDs

QUICK
RECOVERY

BERNHARD BABLOK

Bootable Linux CDs are highly practical in case of emergency. But

producing one yourself does require some knowledge about the boot

procedure and the tool presented here.

046CdBootbd.qxd 29.06.2001 20:06 Uhr Seite 46

The root partition is defined when the kernel is
compiled (in the top level makefile) and has by
default the same value as the current root partition
on which the compilation is running. This value can
be modified later by means of rdev(8) utilities.
Anyone interested in the details of the boot
procedure must definitely take a look in the file
/usr/src/linux /init/ main.c.

The program /sbin/init is the primary process of
a running Linux system (it has the process ID 1). It
reads its configuration file /etc/inittab and starts,
depending on the inputs, the corresponding scripts
and gettys (or the Xdm for graphical log-ins).

The drawback to the procedure described is its
lack of flexibility. The root partition is fixed, plus no
additional parameters can be assigned to the
kernel. This means that in practice almost
exclusively, a two-stage procedure is used. Instead
of starting the kernel directly, the Bios loads a
bootloader. This then loads the kernel and transfers
to it the arguments – either from a configuration file
or from a command line. The commonest
bootloaders (Lilo, Chos, Grub and others) can do
even more. These are boot managers, with which
different operating systems and/ or kernels can also
be loaded.

Where are the files – the initial
ramdisk

Even with the bootloader, one question remains
unanswered. On a completely new system, there is
no formatted root partition, so nor is there a file
system with /sbin/init and /etc/inittab. The kernel
that has just been successfully started would thus
come to a stop with a kernel panic. The solution to
this problem is an initial ramdisk. This is a Linux file
system, which is loaded into the memory either by
the kernel itself (classic ramdisk) or by the
bootloader (initial ramdisk: initrd). The typical
emergency diskette thus contains exactly two
components: a kernel and a zipped file containing a
complete file system.

If one is using a bootloader, two arguments are
necessary for the kernel: root=/dev/ram and
initrd=path to file. Without a bootloader one has to
patch the kernel (again with the aid of rdev), in
order to define the start address of the ramdisk. The
last procedure, though, has now become fairly
uncommon, since in this case both the kernel as
well as the ramdisk has to be copied onto a blank
diskette to the right offsets.

The boot procedure with this is slightly
modified. Firstly, the bootloader loads the kernel
and the initial ramdisk. The kernel unpacks it to a
normal ramdisk and mounts it as root file system.
Next – if present – the file /linuxrc is executed.

When this program has finished, the correct
partition is mounted, as described above, as root-
partition and then /sbin/init is called up. First the
initial ramdisk is either unmounted from the file

system using umount (and the memory space is
released) or – if the /initrd directory exists –
remounted to /initrd.

Stocktaking with Linuxrc

The pivot of any initial installation is the program
Linuxrc. It may be a shell script, but usually, in the
big distributions, is a very time-consuming C
program and is responsible for the partitioning,
selection and installation of the packages.

For a bootable CD-ROM, Linuxrc must do three
main things: depending on the existing hardware,
load the right modules, find a CD-ROM drive with
the boot CD and convince the kernel that the
corresponding device is the right root partition. But
the latter is very simple. Linuxrc has only to write the
device number (which consists of major and minor
numbers) of the root partition in
/proc/sys/kernel/real-root-dev.

For everything to work, the kernel must be
configured and compiled with both ramdisk and
initrd support. The default size of ramdisks has
changed in one of the most recent kernels and is
now only 4MB. This can be modified both during
the kernel configuration and also via a kernel boot
parameter during run time.

Creating the initial ramdisk

There are various ways to create an initial ramdisk.
The necessary steps are listed in the printed listing.
Firstly, a RAM device is pre-filled with zeroes, then a
file system is made. After that, the RAM device is
mounted completely as normal and all the necessary
data is copied into the mounted directory. The
content of the whole device is then copied by means
of dd and gunzip compressed into a file. Depending
on whether only one start diskette is to be made or a
complete rescue system, the content of the disk is
very simple or correspondingly comprehensive.

In the case of a rescue system the size should
also be optimised such that apart from the kernel,

Bootscreen of Bernhard’s
bootable Linux CD.

KNOW HOWBOOT CDS

11 · 2001 LINUX MAGAZINE 47

046CdBootbd.qxd 29.06.2001 20:06 Uhr Seite 47

every byte is put to good use. A well-known trick
here is to write a program which acts differently
depending on with which program name it is called
up. If it is called up as cat, it acts like cat and so on.
The individual program commands are then nothing
but hard links to this program.

This saves a lot of space, because the start-up
code, which every program needs, now only needs
entering once. The drawback to this is that one
cannot simply delete a few programs to make space
for a tool of one’s own on the ramdisk.

A CD-ROM as root directory

A CD-ROM as root directory obviously has the
advantage of size, but the major disadvantage,
compared with a ramdisk, that it is read-only.
Unfortunately a running Linux system requires write
access to many different directories, sometimes as
early as the start phase:
• /var: Here for example important files are made or

perpetuated under /var/run and /var/log.
• /etc: In /etc/mtab, all mounts are stored.
• /dev: This is where pipes are created.
• /tmp: Many programs create files or sockets here.
• /home: This is a hotchpotch of all possible

configuration files.
One possible solution would be to mount a ramdisk
among each of these directories, make a file system
and copy the contents of the CD into it. But one
quickly realises that this will cause problems. So the
kernel should mount the CD as root partition, but
under /dev there are still no devices, so they should
first be created in a ramdisk from the contents of
the CD. The process is similar with the directory /etc.
The program /sbin/init reads the /etc/inittab, but
here too there are still no directories and files, since
only the first script started by /sbin/init can make the
files and directories.

A ramdisk for the /var

Even if it does not work like this, this approach is not
completely wrong and highly practicable for /var,
/tmp and /home. So as not to create three ramdisks
and end up with a bit of waste, though, /tmp is
replaced by a symbolic link to /var/tmp, and similarly
/home by a link to /var/home. The creation of the
ramdisk, the mounting under /var and the playing in
of a complete directory hierarchy (from a Tar archive)
is done here at as early a stage as possible, after
/sbin/init has passed control to the first boot script (in
SuSE for example it is the script /sbin /init.d/boot).

The /proc/mounts trick

For /etc though, we do need a different solution.
Here one can use the trick of replacing the file
/etc/mtab with a symbolic link to /proc/mounts. The
last file may not contain all the information, like
mtab, but still enough to be able to work normally.
If you output both files with cat, you will see hardly
any difference.

As the result of this trick, /etc can stay on the
CD. If write access is also needed for additional files,
these could be replaced by symbolic links to files
under /var, such as ln -s /var/etc/foo/etc/foo.

The /dev problem

As the last remaining directory we have to create
/dev. As yet, there is no completely satisfactory
solution to this. One highly efficient option is to use

KNOW HOW BOOT CDS

48 LINUX MAGAZINE 11 · 2001

Listing 1: Creating a ramdisk
1: dd if=/dev/zero of=/dev/ram bs=1k count=2048
2: mke2fs -vm0 /dev/ram 2048
3: mount /dev/ram /mnt
4: cp -a foo/* /mnt
5: dd if=/dev/ram bs=1k count=2048 | gzip -v9U
> ramdisk.gz

The devfs file system

Devfs is, like Proc, a virtual file system, which can be mounted by the kernel
at the same time as the root file system. The great disadvantage of Devfs is
that most programs cannot cope with it. So SuSE supplies a Devfs kernel
patch (not yet even working properly) for the 7.0, but Yast cannot cope
with a running Devfs system.

But Devfs is to be an option from kernel 2.4 on, so there will certainly be
some changes here. The distributors must be assuming that systems will run
with Devfs. The boot scripts of Red Hat 7 are already prepared for this.

The principle of Devfs is simple. Instead of identifying the devices by
means of major and minor numbers, as is currently the case, each driver
(similar to when loading the corresponding module) logs on explicitly and
is then assigned its name. Contrary to today’s systems, in which one can
easily reach over 2000 virtual devices under /dev, with Devfs it is only the
actual devices which appear there.

The advantages are obvious: a clear, structured /dev directory with
meaningful names (who knows what /dev/hdj13 really means), no more
administration of major and minor numbers (these are necessary so that
several modules don’t get tangled up) and support of hot-pluggable
devices.

The greatest flame wars in kernel history were probably those to do with
Devfs and for a long time it was only available as an unofficial patch.
Opponents claimed, in particular, that the kernel gets bigger due to the
additional administration of the devices. All the more surprising was the
fact that in the course of the last developer series (kernel 2.3.x) Linus
Torvalds did include Devfs in the official kernel, although with the label
”experimental”.

Devfs solves a problem in a generic way, which subsystems such as USB
also have to solve. And high-end devices with PCI devices which can be
swapped on the fly also demand a solution which allows devices to log on
and off.

To run a system neatly using Devfs, it would have to support all drivers in
use. But this is generally not yet the case, which is why there is a Devfs
daemon, which, when accessing classic device names, converts these into
the Devfs names. There will probably be a consolidation of the whole set of
problems in the 2.5 kernel series, since it makes little sense to support
dynamic devices at several places in the kernel.

046CdBootbd.qxd 29.06.2001 20:06 Uhr Seite 48

the Devfs file system. What this is all about is
explained in more detail in the box of the same
name.

Since the time and effort spent getting a system
to run, at least for the first time, with Devfs, is fairly
considerable, an alternative is used in this project. In
terms of memory consumption, it is certainly not
ideal but on the other hand can be used without
any manipulation of the installation. It exploits the
fact that the initial ramdisk, as described above, is
remounted on the directory /initrd, if this directory
exists. This occurs as the last action, before the new
root system is mounted. If one now replaces /dev on
the CD with a symbolic link to /initrd/dev, one has
all the devices which were already available on the
initial ramdisk.

The situation thus created is fairly pathological.
Mounting the CD makes use of a device from the
initial ramdisk. This in turn is mounted on a
directory on the CD. The effect is that there is no
option, during the system power down, of
performing a clean dismantling of the file systems.
And because Linux bars mounted CD-ROMs, you
can only get to the CD again after switching off.

The bootable CD

After this excursion into the shallow end of booting,
all that remains is to put together the pieces of the
puzzle to make a bootable CD. What further
simplifies the matter is the fact that a bootable CD
to the El-Torrito standard does nothing more than
emulate a diskette. So to this end, one creates a
diskette with bootloader, kernel and initial ramdisk
(which essentially contains only the special Linuxrc
described above), copies the diskette into a file
(such as dd if=/dev/fd0 of=bootdsk.img) and tells
the burn program which file is the diskette
emulation.

Under Linux, though, the last line is not quite
correct. The actual burn program Cdrecord does not
in fact create any CD file systems (ISO9660 file
systems), as the program Mkisofs is responsible for
that. It creates the file system and at the same time
copies all files into it which one wants on the CD.
The result is a file with a maximum of 650MB,
which is transferred by Cdrecord via a CD burner
onto a medium (details on this can be found in last
month’s CD writer test).

With a Bios which is error-free the selection of
the bootloader does not come into it, since the CD
now booting is emulating a booting diskette.
Stupidly, though, not every Bios is error-free, with
the result that the Lilo may be loaded by the CD,
but it wants to use Bios commands to load the
kernel from a real instead of the emulated diskette.
This is why the use of Syslinux has taken over as
bootloader for bootable CDs. This loader needs an
(obviously immortal) DOS file system on the diskette
and as a result does not find the kernel directly via
the Bios.

An easier life

This points the way to a bootable Linux CD. All you
need do is replace a few directories and files with
symbolic links, write a little Linuxrc program, create
a boot diskette and burn the whole thing onto CD.
Unfortunately, a system with all the remounted
directories is hard to maintain. In particular, bending
/dev can have some unpleasant side effects, if you
want to boot the system which served as model
again from the disk.

But since almost all steps towards a bootable
CD are independent of the distribution used, it
seems a good idea to create a makefile for
automation purposes. A makefile, in the execution
of the idea, actually turned into an entire hierarchy,
though the principle remains the same. For this you
will need a computer with enough space for two
Linux systems: an active system for the work and a
second system to serve as model for the CD.

The model system is installed and configured
completely normally. Of course, one must hold back
a bit, because even 650MB soon fills up. The model
system is then worked on from the second partition.
This splits the procedure into two parts. In the first
step, only those modifications are performed which
are not destructive in the sense that the system can
no longer be booted. So for example, moving
/home to /var/home is no problem at all. On the
other hand potentially destructive operations are
performed almost on the fly during the creation of
the CD.

Anyone wanting to play around with this
concept a bit can download the files from
http://www.bablokb.de/bblcd/. Extensive
documentation comes with them. The system may
not be perfect yet, but the basic functions are
already in place. There are also professional systems
(for example Webpads), which work with bootable
Linux CDs. An update of the system is no problem
even for amateurs with this, as a simple change of
CD handles the system update.

If you have a weakness for cool gadgets, you
can also get hold of blank CDs in visiting card
format. These are really expensive for just under
20MB of available space, but for a personal Linux
rescue system in your trouser pocket, it’s worth it. ■

Info

Bernhard’s bootable Linux CD: http://www.bablokb.de/bblcd/
H.P.Anvin: The most overfeatured rescue disk ever created:
http://www.kernel.org/pub/dist/superrescue/
Homepage of Gibraltar, a firewall system which can be started from a CD:
http://gibraltar.vianova.at/
The bootable visiting card of Innominate:
http://www.innominate.de/level2.phtml?parent=101
A CD-based rescue system: http://rescuecd.sourceforge.net/
The classic. The most you can fit on a diskette: http://www.toms.net/rb/home.html

■

The author
Bernhard Bablok works for
AGIS mbH as a systems
programmer in the systems
management division. When
he is not listening to music,
cycling or walking, he is
involved with topics
concerning object orientation.
He can be contacted at coffee-
shop@bablokb.de.

KNOW HOWBOOT CDS

11 · 2001 LINUX MAGAZINE 49

046CdBootbd.qxd 29.06.2001 20:06 Uhr Seite 49

