
BEGINNERS ANSWER GIRL

Read rights: For the content
of a file to be made accessible

with the aid of a pager such as
less or an editor to the eyes of
a user, it must carry, from the
point of view of this user, the

r- (“read”-) flag. This can be
set with the command chmod

for the owner of the file
(chmod u+r filename), the
owner group (g+r) and all
others (o+r). In the case of
directories the read right
allows the content of the

directory to be displayed with
ls. Other rights include write
(w) and execution rights (x).

These can be shown using ls -l
(“long listing”).

■

90 LINUX MAGAZINE 11 · 2001

Little graphical helpers such as Qtrans, (presented in
Linux Magazine Issue 8 May 2001 on p96) also offer
offline help, but sadly the dictionary formats used
there make no allowance for simple browsing with
less & co. on the command line. For the DICT-
protocol there is certainly also the command line
tool dict, although DICT, despite its open format,
does have one major drawback: without the dictd
server nothing whatsoever will happen.

All in all, not exactly ideal for users who like to
use their dictionaries for browsing, or would like to
continue to use vocabulary lists created by the
sweat of their own brow. Pure ASCII files are
unbeaten, so long as we stick to the Latin alphabet:
Browsed through with less, you can use the less
command /search term to look specifically for
certain search terms.

Wanted: ASCII glossaries

You can find collections of ASCII dictionaries on the
Internet. Anyone hunting for collected English-
German glossaries, for instance, will strike lucky at
http://www.wh9.tu-dresden.de/~heinrich/dict/dict_
leo_ftp/leo_ftp/.

Once downloaded and copied into a joint
directory (anyone having root rights will create
/usr/dict/eng_deu) the browsing can commence
(assuming you have read rights):

[trish@lillegroenn ~]$ cd /usr/dict/eng_deu
[trish@lillegroenn eng_deu]$ less *

When it comes to the letter z, less asks for leave to
speak in the last line:

(END) - Next: EXERCISE.VOC

How on earth can we get to the next file
EXERCISE.VOC? Pressing h brings up a Help page,
from which we can read:

CHANGING FILES
[...]
:n * Examine the (N-th) next file from theU
command line.
:p * Examine the (N-th) previous file fromU
the command line.

The less-command :n thus brings us to the next file,
while with :p we can jump back a file at a time.
Unfortunately, forward searches are always limited
with /searchterm and backwards searches with

The Answer Girl

ALL IN THE
TRANSLATION

PATRICIA JUNG

The world of everyday

computing, even under

Linux, is often good for

surprises. Time and again

things don’t work, or not as

they are supposed to.

The Linux Magazine’s

Answer Girl demonstrates

how to deal elegantly with

such little problems.

090answergirlsbd.qxd 29.06.2001 20:28 Uhr Seite 90

BEGINNERSANSWER GIRL

?searchterm to the currently displayed file. But here
again the h (or the man page) comes to our
assistance:

SEARCHING
[...]

Search patterns may be modified by oneU
or more of:
[...]

^E or * Search multiple files (pass thU
ru END OF FILE).

To try it out we close the Help mode with q, go back,
using :x to the first file and once in there, with 1G
(“Goto line 1“) to the first line. If we now enter
/*yesterday instead of /yesterday, and with n jump to
the next occurrence of yesterday, the end of a file is
no longer the end of the search. We also search
through all the files stated on the command line. After
entering the asterisk less reports with EOF-ignore in
the last status line, that it is remembering, for this
search, to ignore the end of a file (“End of file“).

Not browsing, but searching

Browsing was an important argument in favour of
ASCII vocabulary lists, but we don’t want to do
without a targeted search. For this purpose, grep is
our friend:

[trish@lillegroenn eng_deu]$ grep yesterday *
BOOK.VOC:yesterday gestern
EXERCISE.VOC:gestern - yesterday
[...]
eng2ger.voc:gestern — yesterday
[...]

No matter how delighted we may otherwise be that
grep tells us where it was found - for our reference
purposes we are not exactly dying to know in which
file grep found it. Luckily man grep declares...

-h, --no-filename
Suppress the prefixing of filenames on outU

put
when multiple files are searched.

that it is possible to turn off the mention of the
filename with the flag -h:

[trish@lillegroenn eng_deu]$ grep -h yesterday *
yesterday gestern
gestern - yesterday
[...]
gestern — yesterday
[...]

But this brings the disadvantage that the vocabulary
is distributed throughout several, sometimes
thematic, ASCII files with the filename endings .voc
or .VOC, even more to the fore: The various files use
different conventions, to separate phrase and
translation from each other. In order to filter out
duplicates, there is only one thing left to do: We
must tailor all the files to a single convention.

Egalitarianism

eng2ger.voc separates the German vocabularies
with two hyphens and a space before and after its
respective English translations:

erst gestern --only yesterday

Since this is by far the largest file, it is advisable to
transfer its convention to the other files.

In the case of EXERCISE.VOC this is not so hard:
This file retains it with a hyphen (-) between the
spaces, which we quickly replace with sed:

[trish@lillegroenn eng_deu]$ sed -e „s/ - / U
-- /“ EXERCISE.VOC > EXERCISE.VOC_

The sed command s quickly and simply substitutes
the first occurrence of SpaceMinusSpace in each
line with SpaceMinusMinusSpace. We actually
receive the result of this command, applied to
EXERCISE.VOC, as the standard output. But since
we would rather see it in a file, we use > to divert
the output into the file EXERCISE.VOC_. After we
have checked that the new file looks reasonable, a

[trish@lillegroenn eng_deu]$ mv EXERCISE.VOCU
_ EXERCISE.VOC

is sufficient to overwrite the old with the new file.
The file BOOK.VOC imposes higher demands.

Here a simple space serves as the dividing symbol:

yesterday gestern

So that there can be no confusion with spaces
between words in phrases, these are marked by an
underscore, which fortunately does not occur as
part of a word:

yearn sich_sehnen

11 · 2001 LINUX MAGAZINE 91

090answergirlsbd.qxd 29.06.2001 20:28 Uhr Seite 91

BEGINNERS ANSWER GIRL

So here we have to replace twice: the first space in
each case by SpaceMinusSpace (s/ / — /) and
globally, every occurrence of _ by space (s/_/ /g).
Combined, this looks like so:

[trish@lillegroenn eng_deu]$ sed -e “s/ / -- U
/“ -e “s/_/ /g“ BOOK.VOC > BOOK.VOC_

Compare and contrast

Before we overwrite BOOK.VOC with BOOK.VOC_,
we would like to check the new file, thus compare
it with the original. But diff is not suitable for this,
as it outputs all lines which are different, and that’s
all of them... What we need is a word-based diff:
wdiff. If this does not come with the distribution, it
is available from
http://rpmfind.net/linux/rpm2html/
search.php?query=wdiff or
http://packages.debian. org/stable/text/wdiff.html.

[trish@lillegroenn eng_deu]$ wdiff --help
Usage: wdiff [OPTION]... FILE1 FILE2
[...]
-3, --no-common inhibit output of commonU
words

With the option -3 you can thus avoid having wdiff
output words which have stayed the same. If we
send the entire output through less again, we are
also preventing something slipping by us when we
look through:

[trish@lillegroenn eng_deu]$ wdiff -3 BOOK.U
VOC BOOK.VOC_ | less
[...]
===
{+--+}
===
[-you can-] {+--you can+}
[...]

wdiff’s output does, admittedly, take some getting
used to: The = line functions merely as a dividing
line. In [- -]there are strings from BOOK.VOC,
which have been replaced in BOOK.VOC_ by the
character string in the {+ - brackets. The {+--+}
means that in BOOK.VOC_ simply two minus
symbols have been added – spaces are easier to
ignore for the word-based diff.

The output is more readable in the so-called
less mode, which does not really have very much
to do with less. But nevertheless,

[trish@lillegroenn eng_deu]$ wdiff -3l BOOK.U
VOC BOOK.VOC_ | less
[...]
===
--
===
you_can --you can
[...]

waives the unwanted bracketing and thus makes
the output easier to read.

But we have no desire to go through the entire
less output, and we ponder the following: If we
have done everything right, wdiff -3 will throw out
exactly the same number of -- lines as BOOK.VOC
(and BOOK.VOC_) has lines (lines: -l):

[trish@lillegroenn eng_deu]$ wc -l BOOK.VOCU
BOOK.VOC_
29018 BOOK.VOC
29018 BOOK.VOC_
58036 total

If we filter all the distracting dividing lines out of
the wdiff output, we should in fact again end up
with 29018 lines (grep -v seeks out all the lines
with no ==):

[trish@lillegroenn eng_deu]$ wdiff -3l BOOK.U
VOC BOOK.VOC_ |grep -v “==“| wc -l
29023

So that did not go quite as planned - where do the
five extra lines come from? Clever as we are, we
will simply display all the lines which contain no
double minus:

[trish@lillegroenn eng_deu]$ wdiff -3l BOOK.U
VOC BOOK.VOC_ | grep -v “==“ | grep -v “--“| wc -l
Usage: grep [OPTION]... PATTERN [FILE]...
Try ̀ grep —help’ for more information.

0

But we’ve certainly done something wrong here...
Of course – minus signs serve as symbols for the
shell that there is an option to follow, and the
strength of the double quotes is not enough to
hide our minus search pattern from the shell.

Luckily we can remember the old Bash trick, of
telling a command with a – that there are no
further options to follow:

[trish@lillegroenn eng_deu]$ man bash
[...]
OPTIONS
[...]
- A single - signals the end of options and

disables further option processing. Any
arguments after the - are treated as filenames
and arguments. An argument of -- is
equivalent to an argument of -.
[...]

With a

[trish@lillegroenn eng_deu]$ wdiff -3l BOOK.U
VOC BOOK.VOC_ | grep -v “==“ | grep -v — “--”U
wc -l

5

thus we come to the missing five lines. But where
did they come from?

[trish@lillegroenn eng_deu]$ wdiff -3l BOOK.U
VOC BOOK.VOC_ | grep -v “==“ | grep -v — “--“

92 LINUX MAGAZINE 11 · 2001

090answergirlsbd.qxd 29.06.2001 20:28 Uhr Seite 92

BEGINNERSANSWER GIRL

arrow_keys

sensing_mark

Three empty lines, which wdiff has somehow
included, but what is going on with arrow_keys and
sensing_mark? The same command without the l
option for wdiff provides information, and

[trish@lillegroenn eng_deu]$ wdiff -3l BOOK.U
VOC BOOK.VOC_ | less

lets us track down the corresponding point by
comparison with the less command /arrow_keys.
Look at this:

[-arrow_keys-]
{+arrow keys —+}

The fault (for the empty lines, too) lies clearly with
wdiff.

With all this toing and froing we had almost
forgotten why we dragged out wdiff in the first
place: We wanted to check if, in the lines where we
replaced underscores, everything had gone
smoothly. Here we would prefer to take wdiff
without the l option, because then we could
exclude all lines in which a {+--+} occurs:

[trish@lillegroenn eng_deu]$ wdiff -3 BOOK.VU
OC BOOK.VOC_ | grep -v “==“ | grep -v „{+--+}“U
| less

Everything in order? Then we simply overwrite the
old BOOK.VOC with the converted content from
BOOK.VOC_:

[trish@lillegroenn eng_deu]$ mv BOOK.VOC_ BOU
OK.VOC

Grep and paste

As if we hadn’t already gone to enough trouble,
technic.voc presents us with a disproportionately
difficult task: Here stand the original and the
translation, each on their own line, and the pair is
separated from the rest of the vocabularies by an
empty line in each case:

Ab-; Abfall
waste

abfuehren
discharge

[...]

With sed on a command line, nothing more will
come of this, because here we must replace line
breaks with “ -- “ and additionally eliminate empty
lines. It also becomes difficult to construct a halfway
comprehensible one-liner with Perl for this. But
luckily the file is so regularly constructed that – once
we have removed the empty lines – an odd, and the
following even line, always go together.

We can get rid of the empty lines by using grep
to seek out all those lines in which at least one letter
a-z and/or A-Z occurs:

[trish@lillegroenn eng_deu]$ grep [a-zA-Z] tU
echnic.voc

Now it gets a bit more difficult. But then we
remember the cut command, with which columns
can be extracted from text files. Where’s there’s a cut,
there must also be a paste, which combines several
columns into a file. In fact, we find it with man paste.

With -d we can specify a column delimiter –
unfortunately only a single letter, but we can still
replace that later with sed. What matters is only
that the Delimiter does not occur in technic.voc.
How would # work? Let’s count:

[trish@lillegroenn eng_deu]$ grep -c “#“ tecU
hnic.voc
0

The hash symbol (“#“) occurs precisely 0 times in
this dictionary file and is therefore ideally suited as a
temporary column delimiter for paste.

The rest is perfectly simple: paste wants to have
as argument just the two files which serve as first
and additional column(s). Now we have no files at
all, but the manpage tells us that paste is also
satisfied with the standard input (from the Pipe of
grep), if instead of a filename we insert a -.

In fact we can settle quite happily for the
standard input STDIN (“standard input“); this has in
particular the nice property that a line disappears
from STDIN as soon as it has been read out once. If
we twice replace paste in an admittedly dastardly
move for STDIN, we obtain precisely the effect we
want: In the first column are the odd lines, in the
second column the even lines:

[trish@lillegroenn eng_deu]$ grep [a-zA-Z] tU
echnic.voc | paste -d “#“ - -
Ab-; Abfall#waste
abfuehren#discharge
[...]

To remove the hash symbol from this is one of our
easiest exercises, and we immediately divert the
result into the technic.voc_ file:

[trish@lillegroenn eng_deu]$ grep [a-zA-Z] tU
echnic.voc | paste -d “#“ - - | sed -e “s/#/ U
-- /“ > technic.voc_

The result technic.voc_ ...

Ab-; Abfall -- waste
abfuehren -- discharge
[...]

... can thus at the same time be renamed in
technic.voc.

This means we have a sufficient selection of
dictionary files (BOOK.VOC, EXERCISE.VOC,
eng2ger.voc and technic.voc) in place – I will leave

Pipe: written on the command
line as |, takes the standard
output of the commands
standing to the left of it and
feeds the command to the
right-hand side.

■

11 · 2001 LINUX MAGAZINE 93

090answergirlsbd.qxd 29.06.2001 20:28 Uhr Seite 93

BEGINNERS ANSWER GIRL

converting the rest to your inventive powers – and
can finally turn to a small script, which takes over the
translation of words entered on the command line.

Look me up

Like (almost) every shell script it begins by specifying
which Shell we are using. Naturally the one with
which we are most familiar, and that will usually be
the Linux standard shell bash:

#!/bin/bash -vx

94 LINUX MAGAZINE 11 · 2001

Turn around once

Of the four vocabulary files used here, BOOK.VOC displays one major difference from the others: The English term is on the
left, the German match on the right. Since the wb script from Listing 1 does not recognise that for example gestern –
yesterday from eng2ger.voc and yesterday – gestern from BOOK.VOC is a duplicate for our purposes, it is presumably simplest
just to swap the columns in BOOK.VOC.

Like all the text modification exercises covered in this Answer Girl, there are several ways to achieve this goal. A few of
them will be listed at this point by way of example.

Cut and paste

With cut columns can be extracted from a text file, which, with paste can be – and in reverse order, too - added back again.
We explicitly specify the column delimiters with the option -d (“delimiter“). Unfortunately this can only be one character, not
a character string, and that makes the whole thing somewhat fiddly:

[trish@lillegroenn eng_deu]$ sed -e “s/ -- /%/“ BOOK.VOC | cut -d “%“ -f 1 > /tmp/BOOK.VOC.1
[trish@lillegroenn eng_deu]$ sed -e “s/ -- /%/“ BOOK.VOC | cut -d “%“ -f 2 > /tmp/BOOK.VOC.2
[trish@lillegroenn eng_deu]$ paste -d “%“ /tmp/BOOK.VOC.2 /tmp/BOOK.VOC.1 | sed -e “s/%/ -- /“ > /tmp/BOOK.VOC.paste

In the first two lines we replace the true column delimiters in each case “--” with the working delimiter %. Line one, with cut -
f 1, then fetches out everything on the left of the delimiting symbol, and writes it into the temporary file /tmp/BOOK.VOC.1.
The same thing happens with the second column (-f 2) on the right of the delimiting symbol in line two – the output of this
cutting-out action with cut lands in /tmp/BOOK.VOC.2. If we give paste as first argument in the third line the second and as
second argument the first temporary file, we have swapped the columns from BOOK.VOC. Now just replace the percentage
sign again with “--” and save the result of the swap action in /tmp/BOOK.VOC.paste. If everything has gone smoothly, the
original file can be overwritten with this.

Pearls and expressions

It is of course less fiddly, too - but then we step into the area of independent script languages such as Perl. Perl can be used
very well with the -p option as a more powerful sed substitute. As with sed the -e option (“execute“) introduces a Perl
command to be executed on the command line.

[trish@lillegroenn eng_deu]$ perl -pe ‘s/(^.*)(--)(.*$)/$3$2$1/’ BOOK.VOC > /tmp/BOOK.VOC.perl

Everything (.*) from the start (^) of a line to the end ($) is to be replaced by a revised version. So that the content of the lines
does not get lost, we save it in round brackets: the start of the line before the delimiter string “--” in the first buffer, “--” in
the second and the rest up to the end of the line in the third buffer. The whole thing is now replaced by the content of the
third buffer ($3), followed by the delimiter string from the second ($2) and the former line start from the first buffer ($1).

Make sure that you set the Perl Substitute command in single quotes (‘). Double quotes cause the shell to assume that
$3$2$1 means the contents of shell, not Perl, variables.

As if it were (k)not a problem

The most elegant way is via awk. Contrary to paste, this tool can also manage with multi-character column dividers. All the
same, the delimiter here is specified with the option -F (“Field separator“).

[trish@lillegroenn eng_deu]$ awk -F “--” ‘{print $2 “--” $1}’ BOOK.VOC > BOOK.VOC.awk

The awk-“program“ in single quotes normally consists of a pattern, on which a command block is applied in braces. Since we
mean the entire file, we need not specify any explicit pattern and settle for the bracket block.

In this we instruct awk to output the content of the second column ($2), then the delimiter string “--” and finally the
content of the first column.

090answergirlsbd.qxd 29.06.2001 20:28 Uhr Seite 94

BEGINNERSANSWER GIRL

Errors often occur when developing a script, which
is why we will first switch on the debug options -vx.

Provided /usr/dict/eng_deu contains only
converted dictionary files, we shall hold this
dictionary directory in the variable WBDIR:

WBDIR=/usr/dict/eng_deu

As with any script intended for more than one
person, we begin with a call up test: If the user
enters more or less than one search term as
argument (thus “not equal“) to one...

if [$# -ne 1]; then

... we simply spit out how our script ought to be used:

echo “Usage: $0 string“

Nicely enough, in the variable # a shell script recalls
the number of arguments with which it was called
up. In the variable 0 (null) can be found the reset
argument, thus the command name itself (if
applicable, with specified path).

On the other hand...

else

...we search in the vocabulary lists in the
directory $WBDIR for the first command line
argument ($1):

grep -hw “$1“ $WBDIR/*

With the “Word option“ -w we ensure that grep
only outputs something when the search word pops
up as such (and not for example as part of another
word) in the vocabulary lists.

In order to exclude typing errors in upper and
lower case, we can also force grep to ignore
differences between upper and lower case letters:

grep -hwi “$1“ $WBDIR/*

which means we really are finished and can close
the if construction:

fi

Issue execution rights to our wb script

[trish@lillegroenn /tmp]$ chmod ugo+x wb

and test:

[trish@lillegroenn /tmp]$./wb
#!/bin/bash -vx

WBDIR=/home/trish/dict
+ WBDIR=/home/trish/dict

if [$# -ne 1]; then
echo “Usage: $0 string“

else
grep -hwi “$1“ $WBDIR/*

fi

+ [0 -ne 1]
+ echo Usage: ./wb string“
Usage: ./wb string

Thanks to the verbosity option -v (“verbose“) the
Bash displays every single line, which it remembers
to execute. The lines with the initial plus are
something for which we can thank the -x
(“extensive“) option, which also states each time
what the shell really sees internally, if it has
performed all the replacements (read out the
contents of variables). Last of all - and unfortunately
not especially marked out - we also find the output
with which we would have been faced without the
debug options in the wilderness - in this instance:
Usage: ./wb string.

And the variant with one search word functions:

[trish@lillegroenn /tmp]$./wb yesterday
[...]
yesterday -- gestern
only yesterday -- erst gestern
yesterday -- gestern
gestern -- yesterday
vorgestern -- the day before yesterday
[...]

No doppelgangers

This output clearly shows that we still have some
plans for the script: We want to get rid of the
duplicates. This is really quite a simple matter: sort
the output with sort (thanks to -f — “fold“ - with
equal value for upper and lower case letters) and
use uniq to throw out the doppelgangers:

grep -hwi “$1“ $WBDIR/* | sort -f | uniq

Unfortunately, there is something wrong with this,
because the test run produces

[trish@lillegroenn /tmp]$./wb yesterday
[...]
gestern -- yesterday
only yesterday -- erst gestern
vorgestern -- the day before yesterday
yesterday -- gestern
yesterday -- gestern
[...]

which may be sorted, but it is still not free from
duplicates. An investigation using ./wb yesterday >
/tmp/test of the output diverted into the file
/tmp/test with an editor comes up with: The sole
difference between the two “yesterday -- gestern“
lines is the Whitespace characters.

OK, then we’ll standardise all these (‘[:blank:]’)s
first into spaces (‘ ‘) and simplify all space sequences
with the tr option -s (“squeeze“) into a single one in
each case:

grep -hwi “$1“ $WBDIR/* | tr -s ‘[:U
blank:]’ ‘ ‘ | sort -f | uniq

Shell: The command line
interface between users and
their input devices and the
operating system. Most UNIX
shells have a more or less
powerful programming
language built in.
$: Shells such as the Bourne
shell (sh), Korn shell (ksh) or
the Bourne-Again-Shell (bash,
under Linux also known as sh)
reveal the content of a
variable, if one places a dollar
symbol before their name.
Whitespace: Collective term
for characters which mislead
the eye into believing “There
is no character here“. These
include space and tab
characters.

■

11 · 2001 LINUX MAGAZINE 95

090answergirlsbd.qxd 29.06.2001 20:28 Uhr Seite 95

BEGINNERS ANSWER GIRL

And yet the double line is still proving problematic: Of
course, because now we have, in one output none
and in the other precisely one space at the end of the
line, which is bothering uniq.

So, with a sigh, we again pull out sed and replace
a single space at the end of the line ($) with nothing

grep -hwi „$1“ $WBDIR/* | tr -s ‘[:U
blank:]’ ‘ ‘ | sed -e „s/ $//“ | sort -f | uniq

Et voila – at last the wb script (Listing 1) is ready to
go to work. Now the debug options can go, and
root can copy it to /usr/local/bin to be used by
anyone. Since this directory is usually included in the
PATH variable, it is now also sufficient to call up wb
without specifying the path. ■

96 LINUX MAGAZINE 11 · 2001

Listing 1: The dictionary script wb

#!/bin/bash

WBDIR=/home/trish/dict

if [$# -ne 1]; then
echo “Usage: $0 \“string string ...\“”
echo “ $0 string“
echo “ $0 regexp“

else
grep -hwi “$1“ $WBDIR/* | tr -s ‘[:blank:]’ ‘ ‘ | sed -e “s/ $//“ | sort -f | uniq

fi

Value added
Sharp-eyed readers may be wondering how, in Listing 1, one proposed line suddenly turned into three echo lines. Anyone
who has experimented a little with the script (or grep) will know that one can suggest to the shell, by including several strings
in quotes, that despite everything, there is only one argument involved.

As soon as users want to search for an expression consisting of several words, they simply have to place it in double quotes:

[trish@lillegroenn /tmp]$ wb “sich erinnern“
recollect -- sich erinnern an
remember -- sich erinnern
sich erinnern --remember
[...]

We should of course document this type of use:

echo “Usage: $0 \“string string ...\“”

So that echo does not wrongly interpret the quotes to be output as the delimitation of its own argument, they have to be
escapt (stripped of their special position in the shell) with \.

The last echo line

echo “ $0 regexp“

on the other hand intends that grep, right from the start, looks not only for character strings, but also for regular expressions
(“regexps“). This means for example that the user can elegantly skate over any uncertainties in terms of spelling:

[trish@lillegroenn /tmp]$ wb “ye.*y“
erst gestern -- only yesterday
Freibauern -- yeomanry
gelbliche -- yellowly
gestern -- yesterday
hefig -- yeasty
[...]

searches for the translation of words beginning with ye and ending in y. The dot here stands for any character, and the
following * signals that any number of (at least none) should pop up from this.

The only thing to watch here is that with regular expressions, too, the saying applies: “Some are more equal than others.“
Although the ground rules are the same, such as not all perl regexps can also be used with grep. It’s therefore often worth
taking a look at the grep man page...

090answergirlsbd.qxd 29.06.2001 20:28 Uhr Seite 96

