
FEATURE TCL

34 LINUX MAGAZINE 11 · 2001

Object-oriented Tcl

OBJECTIVITY
CARSTEN ZERBST

With this article, Linux Magazine is starting an
occasional series of reports on news from the Tcl
world. We will be introducing tools and

extensions that enable particularly simple or
elegant Tcl solutions. As the development model of

Tcl has changed recently, the first part will start with
new additions and amendments. Following that, we will
be introducing the object-oriented extension [incr Tcl].

For years the scripting language Tcl has been
labelled ”the IT industry’s best kept secret”. Although
the Tcl programming community is growing, this self-
deprecating description is quite accurate. While its
competitors Perl or Python are on everyone’s lips, Tcl
ploughs on in obscurity without much fuss.

There are reasons for that. For one thing, there is
still no equivalent to Perl-CPAN or Python.org, the
search for Tcl extensions or documentation for a specific
problem can thus be quite difficult. The ‘The Story So
Far’ box examines the current state of affairs, how it
came about, and what the near future is likely to bring.

The many changes in recent months have meant
that many extensions and a lot of information have
become even harder to find. The developers’
information page is now at Active State. It contains
many links to documentation, extensions and
programs. Another option is the Tcl foundry at
Sourceforge. For many everyday problems it’s also
worth having a look at the Tcl’ers Wiki. If you’re still
drawing a blank, the newsgroup news://comp.lang.tcl
is the last resort for any questions on Tcl.

One old criticism of Tcl that keeps reappearing,
and not just on the Tcl newsgroup, is its lack of
object orientation. Fortunately, it is easily upgraded
using an extension - the sophisticated and very
popular OO-extension [incr Tcl], which is the subject
of this month’s article.

Doubleplus good: [incr Tcl]

With scripting languages you frequently wish for
the blessings of object-oriented development:
classes, inheritance, data encapsulation and so
forth. Although Tk does already feel pretty object-
oriented, Tcl does not support any OO features

apart from namespaces. This is where the extension
[incr Tcl] comes in. Not only is its name similar to
C++, the Tcl command incr is the equivalent of the
++ in C, but [incr Tcl] aims to extend the base
language with OO features, just like C++. This
extension is available from Sourceforge, but it is also
included in most Linux distributions.

Prior to use, the extension must be loaded into a
tclsh or wish, this is done with the command package
require Itcl. All [incr Tcl] commands are defined in the
namespace itcl, you can either use their full names or
import them into the current namespace. In the
following text we will be describing programming with
this extension using a type 1 font editor as an example.

Class-wise

Classes are the basic components of object-oriented
programming. We will be assuming a certain degree
of familiarity with the concept of classes. Before
objects can be created and used, it is necessary to
define a class. The assignment of classes determines
which variables and methods exist, and what their
tasks are. To define class variables it is sufficient to
list their names with the command variable.

Methods are defined in a similar way to normal
Tcl procedures: the name is followed by the input
parameters and then by a body containing the actual
source code. Within this body, class variables can be
accessed directly. The variable this, containing a
reference to the current object, is also available there.
In addition, two special methods can be defined:
constructor and destructor. They are invoked when
objects are created or deleted. Their structure is again
similar to that of normal procedures, but the
destructor has no input variables.

Our example in Listing 1 shows the definition of the
class point. Each point has an x- and a y-coordinate set
by the constructor. Point objects can also be moved.

The classes defined with [incr Tcl] can be used in
a similar way to Tk widgets. As you can see in
Listing 2, the creation of a new object is invoked
using classname objectname ?parameter?. The
object name can either be specified explicitly or

Tcl is the IT industry’s best kept secret - and very much alive.

The object-oriented extension with the unwieldy name of [incr Tcl]

that we are going to introduce at the start of our Tcl series, has

contributed a great deal to Tcl’s popularity.

Listing 1: Class definitions with
methods and variables
package require Itcl
namespace import itcl::*
class Point {
public variable x
public variable y
constructor {_x _y} {
set x $_x
set y $_y

puts ”constructor: $this, $x:$y”
}
destructor {}
public method move {dx dy} {
set x [expr {$x + $dx}]
set y [expr {$y + $dy}]
return [list $x $y]

}
}

034Tclsbd.qxd 29.06.2001 18:34 Uhr Seite 34

FEATURETCL

11 · 2001 LINUX MAGAZINE 35

assigned automatically using #auto. The object is
now available as a new command under this name,
with the syntax objectname method ?arguments?.
The methods cget, configure and isa are available
for each object.

The first two are used to return and set variables
defined as public. The method isa checks whether
an object is a member of a particular class. We also
have the method move that we defined ourselves.
The commands delete object objectname and
delete class classname delete objects or classes.

Family ties

The outline of type 1 fonts consists of straight lines
and curves. Each straight line is defined by two
intersections, each curve by two intersections and
two check points. In order to be able to distinguish
between the two different point types, each one
will be assigned its own class.

In the example in Listing 3 both classes inherit
from the point class using the keyword inherit. The
constructor passes the required variables to the base
class. Additional variables and methods can be
added in the definition of the derived classes - such
as the method coordinates in the class Intersection
in Listing 3.

So far we are lacking the ability to represent the
objects on canvas. Normally this method would be
placed in the point class. In order to demonstrate

multiple inheritance we have defined a special class
draw in the example.

As you can see from Checkpoint, multiple
inheritance is also pretty simple to use. However, it
is not altogether without problems. Just ask yourself
the question: ”What happens if two base classes
each contain a method with the same name?” In
[incr Tcl] the method from the first base class on the
inherit list is used, which is not necessarily what you
want. Another problem that can occur with
multiple inheritance is diamond inheritance (see
Figure 1). This case is not supported in [incr Tcl].

A type 1 font does not only consist of individual
points, however, and we are still missing outlines.
This is an opportunity to introduce another feature
of object-oriented programming - delegation.

This describes a process where a class assigns
tasks to objects in another class. In our case a
straight line is defined by two intersections and
does not have to concern itself with representation
and data storage. Whenever the line requires
intersection coordinates it can request them from
the intersection objects. The necessary intersections
are stored in the Line class (Listing 4).

Mine!

As part of data encapsulation a class should be able to
determine who can access its variables and methods.
[incr Tcl] supports three different levels of access:

The story so far

John Ousterhout, the spiritual father of the language, was also
its main developer for many years. He designed its basics while
a professor at Berkeley University, before leaving for Sun
Microsystems with a team of developers. There, the team
created the bytecode compiler and took the first steps towards
Unicode. Before internationalisation was completed with Tcl
8.1, Ousterhout left Sun to set up his own company, Scriptics.
Scriptics’ aim was to sell development tools (Tcl Pro) and
professional support for Tcl. This was meant to finance further
development of the language, amongst other things. Releases
8.1 to 8.3 were developed under the auspices of Scriptics.
However, sales of Tcl Pro were apparently not sufficient to
finance full-time Tcl developers.

This is the classic dilemma of open source companies, Python
have had similar problems recently. Scriptics was renamed
Ajuba Solutions, its new emphasis being the sale of B2B
(business to business) products for integrating databases into
the Internet using XML. As a result, Ajuba’s developers seem to
have got to know XML too well - the whole company was taken
over by Interwoven, a large manufacturer of B2B software, who
was not interested in developing Tcl any further.

So what is the situation for Tcl about half a year later?
Ousterhout had already moved the home of the Tcl sources to
Sourceforge in the days of Ajuba. Apart from the interpreter,
you can find about 200 other projects there that develope Tcl
tools or extensions, including the Tcl-Pro-Suite tools. Since

Interwoven did not want to market Scriptics’ crown jewels, they
generously issued them as Open Source.

However, the issue of where the sources were stored was only
part of the problem. It was also necessary to transfer development
control from the hands of a benevolent dictator to the
development community. The solution was the Tcl Core Team (TCT).
Tcl users decided on the Internet who should be a member of the
TCT and thereby determined the direction of future development.
Development suggestions (mostly including the solution) are
submitted as Tcl Improvement Proposals (TIP). After a discussion on
the public mailing list TCT members vote on the proposals.

Thanks to this process, development has speeded up
significantly. However, the loss of full-time Tcl developers paid for
by Scriptics has, of course, left a large gap. This is where a company
called Active State stepped in. They are already known to users of
Perl and Python for support and porting, with Tcl they now offer
all of the three major scripting languages. In the meantime, Active
State has also picked up two prominent Tcl developers, namely
Jeffrey Hobbs and Andreas Kupries.

Active State will be offering a ”batteries included” distribution in
the foreseeable future, putting an end to the constant need to
search for suitable extensions. At the moment they are working on
Tcl version 8.4, a new alpha release of which is meant to be available
on Sourceforge by the time this issue goes to print. On the TCT
mailing list and in the newsgroup comp.lang.tcl there are already
first rumblings about Tcl 9.0. Overall, we can expect a lot of activity.

John
Ousterhout,
father of Tcl. Still
seems to be
having problems
with ”Tcl/Tk for
Dummies”.

Figure 2: The type 1
editor is based on
the program excerpts
in this article.

034Tclsbd.qxd 29.06.2001 18:34 Uhr Seite 35

FEATURE TCL

36 LINUX MAGAZINE 11 · 2001

• public: The method or variable is accessible to
anyone.

• protected: Protected elements can only be used
within the class itself or in classes that have been
derived from it.

• private: Only accessible within the class itself.
Up to now, the coordinates of a point could be

modified at will using configure, without any
validation of the values being performed. Once
the coordinates have been defined as protected,
they can only be changed using the method
move.

class Point {
protected variable x
protected variable y
...

}

The derived classes can still access variables directly,
without being dependant on specific methods. If
the coordinates had been assigned a level of
private, however, even the derived classes would
not be able to access them directly.

All in all

[incr Tcl] is a simple way of defining classes including
inheritance, in which variables and methods can be
protected against access at different levels. Its
features - including multiple inheritance - are
modelled on C++. In fact, [incr Tcl] classes can even
inherit from C++ classes. A particularly good
example of this if the CORBA extension Combat by
Frank Pilhofer.

Using objects will be familiar to any user who
has worked with Tk before. The features of [incr Tcl]
can therefore be used without too much additional
learning effort being required. Namespaces, which
were first developed in [incr Tcl] have already found
their way into normal Tcl several years ago, which is
why we have not dealt with them here. Additional
literature on [incr Tcl] can be found at
http://www.tcltk.org/

The examples above, and an editor derived from
them (Figure 2), can be found at http://www.tu-
harburg.de/~skfcz/tcltk.html However, at the
moment, there isn’t any source text to represent the
letters on canvas. We will be looking at the options
of the canvas widget in the next instalment of Tcl. ■

Listing 3: Inheritance and multiple inheritance
class Draw{
constructor {} {}
destructor {}
public method draw {} {
if {[$this isa Checkpoint]} {

draw Checkpoint
} elseif ...

}
}
class Intersection {
inherit Point
constructor {_x _y} {
Point::constructor $_x $_y

} {
constructor for Intersection

}
public method coordinates
{} {
return [list $x $y]

}
}
class
Checkpoint {
inherit Point Draw
constructor {_x _y} {
Point::constructor $_x $_y
Draw::constructor

} {
constructor for Checkpoint

}
}

Info

Developer’s information page:
http://tcl.activestate.com

Tcl foundry at Sourceforge:
http://sourceforge.net/foundry

/tcl-foundry
Tcl’ers Wiki:

http://mini.net/cgi-
bin/wikit/0.html
Tcl newsgroup:

news://comp.lang.tcl
[incr Tcl] at Sourceforge:

http://sourceforge.net/projects
/incrtcl/

Combat, a Tcl CORBA
extension:

http://www.fpx.de/Combat/
The Tcl Tk homepage:
http://www.tcltk.org/

The type 1 editor:
http://www.tu-

harburg.de/~skfcz/tcltk.html

■

The author

Carsten Zerbst is a member of
staff at Hamburg Technical

University. Apart from
researching service integration

on board ships he also
investigates Tcl in all its forms.

Listing 2: the interactive point
class
% Point p1 10 10
p1
% p1 cget -x
10
% p1 configure -x 200
% p1 cget -x
200
% Point #auto 20 20
point0
% point0 move 10 20
20 30
% point0 isa Point
1
% point0 isa Oink
0
% delete object p1 point0
% delete class Point

Figure 1: Valid and invalid relations between
classes in [incr Tcl]. Inheritance, multiple
inheritance and delegation are permitted, but
diamond inheritance is not.

Listing 4: Delegation
class Line {
private variable k1
private variable k2
constructor {_k1 _k2} {

foreach k {$_k1 $k2} {
if {![$k isa nodal point]} {

error “Node $k is not a nodal U
point!”

}
}
set k1 $_k1
set k2 $_k2

}
}

034Tclsbd.qxd 29.06.2001 18:34 Uhr Seite 36

