078Pcor ner Newsbd. gxd 29.06.2001 20:19 Uhr Seite 78 $

J" PROGRAMMING

J’ PROGRAMMING CORNER

Control structures

CHECKPOINT
CHARLIE

MIRKO DOLLE

In the last issue, we became familiar with the if
construction and the test comparison program. This
made it possible for us to make the program
sequence independent of external circumstances for
the first time. Depending on the situation, other
commands were executed. Bash knows additional
control structures, which are especially necessary for
larger comparisons and for multiple call-ups of
individual commands (loops).

Parameter recognition

We shall begin with a small script. Like almost every
other Linux program, our script will use the
parameters -h or —>-help to output a brief
explanation of the permissible options and then
stop by itself. To do this, we use an if construct,
covered last month:

#! 1 bi n/ bash

if ["$1" ="-h" -0 "$1" ="—>-help"]; then
echo "cal | up:"

echo " $0 [-h|—-help]"

echo "Paraneter:"

echo " -h, —-help: brief explanation"

fi

78 LINUX MAGAZINE 11 -2001

4

After the introduction to control structures
and the presentation of simple comparison
options in the last month’'s Programming

Corner, this time we will be concerned with
series comparisons, loops, keyboard inputs

and small selection menus.

It becomes relatively fiddly and involved when we
have to check several parameters and also wish to
ignore upper and lower cases:

#!'/ bi n/ bash

if ["$1" ="-h" -0 "$1" ="-
-[hH [eE][IL][pP]}"]; then
echo "-h"

elif ["$1" ="-v" -0 "$1" ="-V']; then
echo "-v"
elif ["$1"
echo "-q"
fi

H' -0 -z "${1#->2

"-q" -0 "$1" ="-Q]; then

The test on —>-help in the second line needs some
explanation. So as not to have to test —>-help in all
variants of upper and lower case, we use the pattern
recognition from part 3 of our course. With ${1#—>-
[hH][eE][IL][pPI} we search through the variable $1 for
a string which begins with a double minus sign and
contains an upper or lower case ‘h’, upper or lower
case ‘e’ and so on. If there is a—>-helpin $1 in any
upper or lower case combination, it is removed —
leaving a blank character string. This is where the test
parameter -z comes into play. It supplies a true value
if the following character string is empty — thus a
version of —>-help has been found. Words which only
begin with —>-help (for example —>-helper) fail the
test, because the ending would be left over.

Simplification using case

As can be seen from the previous example: Large-
scale parameter tests can hardly be conducted in

078Pcor ner Newsbhd. gxd

29.06.2001 20:19 Unr

this manner. There is an urgent need for
simplification. The method of parameter
comparison is always the same: We check in each
case whether the first parameter meets a certain
condition. For such serial comparison, there is the
case construction:

#!'/ bi n/ bash

case $1in

-h|-H —>-[hH [eE] [I L] [pP])
echo "-h"

-v[-V)
echo "-v"

-q/-Q
echo "-q"

esac

The case construct consists of the bracketing
keywords case and esac (like the final fi for if, esac is
also the reversal of the letters of case), a character
string (here $7), which will be tested, and the
individual blocks with the respective cases. These
blocks begin with the pattern which is limited by a
final round bracket, and end with a double semi-
colon — in between are the instructions which are to
be carried out for the respective case.

In our example we have three different cases, -
h, -vand -g. The pattern of the first case consists of
three parts, one of which must be true. The
patterns themselves are practically identical to those
from our if construct, although considerably clearer.

Apart from the square brackets which can be
used to specify permitted characters or character
ranges, there are also the wildcards ? for any
character and * for any sequence of characters. This
makes it possible to distinguish the various network
devices from each other:

case $device in
et h*)
echo "Et hernet"

ppp*)

echo "Mdent
i ppp*)

echo " SDN'
[0)

echo "Loopback"
.), ;
echo "Unknown"
esac

The last pattern, "*", applies to any character string
—which is why this case construct in fact would
always have to return “Unknown". But the cases
are processed from top to bottom, and the only one
to be executed is the first one that fits. All the

Seite 79 $

PROGRAMMING CORNER

others are ignored. So in the case of “ppp0” only
"Modem" is output, but not “Unknown". The
script is then continued, after dealing with the case,
after the esac keyword.

Loops

With loops it is possible to have program segments
executed many times, for example, to evaluate all
command line parameters one after the other. The
Bash knows three kinds of loop constructs: for,
while and until. In principle the three loops are
interchangeable with each other: Anything which
can be solved using for, can in any case also be
written using while. Nevertheless you should decide
which loop construct is most appropriate for which
problem.

for

The for loop is suitable for applications where a list
of variables is laid down and has to be processed
individually. This is practical for example for
evaluating the command line parameters with our
case construct:

#!'/bi n/ bash
for Pin $@ do
case $Pin
-h|-H —>-[hH [eE] [I L] [pP])
echo "-h"
-v[-V)
echo "-v"
-q-9Q
echo "-q"
)
echo "Unaut hori sed paraneter $P"
esac
done

$@ provides a list of all command line parameters,

which for then enters in sequence in the variable P,
in order then to execute the body of the loop with

our case construct.

If you're already familiar with other
programming languages, you will be slightly
surprised at the way the for loop works (in Perl for
example it works in a completely different way).
Usually, a start and an end value are stated, then the
size of the increments by which the start value is to
be raised. The loop is then run through until the end
value is reached — which is usedto read in the values
from 1 to 10 of a field, for instance.

This is not expressly provided for in the Bash,
but we can remedy this by using the utility program
seq from the sh_utils package (or sh-utils). seq
supplies us with a number sequence from a
specified starting value to an end value, there is the
option of setting the size of the increments, and the

PROGRAMMING

11-2001 LINUX MAGAZINE 79

4

078Pcor ner Newsbd. gxd 29.06.2001 20:19 Uhr Seite 80 $

PROGRAMMING

PROGRAMMING CORNER

number format can also be changed. In order to
output “Hello world” 10 times, we could use the
following script, where the number of the
respective run-through is placed in front in square
brackets:

#!/ bi n/ bash

for i in seql10; do
echo "[$i] Hello world"
done

Unfortunately there is no manual page for seq, but
you will find relatively exhaustive help via the —>-
help parameter. For home use, the invocations by
means of seq Start End and seq Start Step size End
are sufficient to cover most cases.

while

Certainly the most frequently used loop
construction is while. In this case, the body of the
loop is executed until the specified condition is true.
One potential application is that of reading in any
long field:

#! 1 bi n/ bash

i=1

whi | e

read -e -p "[$i]>";
do

fiel d[$i]="$REPLY"

o $[i+=1]

done

echo ${field[*]}

The condition in this case is an invocation of read,
but, exactly as with the if construct, test or any
other program can be used. If the return value of
the program is 0, the condition is true, otherwise
false.

The read command is new, with which we read
inputs from the keyboard for the first time (exact
standard input). The input is — unless otherwise
specified — stored in the variable REPLY. The
parameter -e activates the ReadLine extension, and
you can edit the input line as usual with the cursor
keys, and the tab completion of program names
also works. The second parameter -p “[$i]> “
defines the prompt, which is displayed at the

Table 1: read parameters

-a Field Allows the input of several values separated by spaces. The values are stored
in the array Field , incrementing from element 0 on

-e Activates the ReadLine support. This makes it possible for example to edit the
input line with cursor keys or tab completion

-r Deactivates the backslash-enter special treatment. Normally it is possible to
continue an entry on the next line by means of a backslash at the end of a
line, without the line break having any effect

-p Prompt Replaces the standard input challenge with the character string Prompt,
without attaching a line break.

Name Stores the input directly in the variable Name and not, as usual, in REPLY

80 LINUX MAGAZINE 112001

4

beginning of the input line. In this case the element
number is in the array, $iin square brackets with a
smaller symbol and blank space following. Unlike
echo there is no line break attached to the prompt,
the cursor stays behind.

The rest of the script is quickly explained, while
checks each time whether read is true — what
exactly happens if something were to be entered.
The input has put read into the variable REPLY,
whose content we store in the body of the loop as
element number $i of our array field. Then i is
increased, so as not to overwrite the stored values,
and the loop starts again from the beginning.

It is only when, instead of a value, [Ctrl+D] is
pressed, the return value of read does not equal 0,
the condition is thus not met. The loop ends, and
the next instruction after the done belonging to
the loop is executed. In our case it is the output of
all elements of our array field, which we achieve
by specifying a start in place of the element
number.

Program simplification

The example just shown is still very exhaustive and
even relatively complicated as it is written. There is a
much shorter and faster way:

#!'/ bi n/ bash

whi | e

read -e -p "[$[i+=1]]> " field[$i];
do

done

echo ${field[*]}

The most unusual thing, at first glance, is the empty
body of the loop, containing only the colon as zero
function. But this is necessary, since the body
cannot be empty. There is no need to restore REPLY
in the field element, because by specifying the
variable name field[$i] as last parameter of read, the
values entered are stored immediately in the array
and not in REPLY first. Incrementing the variable j by
1 is also transferred into the condition and in
addition the initialisation has been done away with
by the 1. The crux of the matter is that new
variables are empty by default, but have the
arithmetical value 0. The instruction $/i+=1] first
increments the variable by 1 and then delivers the
value. So we begin as before at element number 1.

until

until incidentally does the same as while, except
that the loop is executed as long as the condition is
false — otherwise there is no difference. The
following example is something you will be familiar
with from the presentation of the while loop, the
condition has been inverted by means of
exclamation marks — true becomes false and vice
versa.

078Pcor ner Newsbd. gxd 29. 06.2001 20:19 Uhr
#! [bi n/ bash
i'=1
unti|
I'read -e -p "[$i]>";
do
field$i]="$REPLY"
o $[i+=1]
done

echo ${field[*]}

In Listing 1 you will find the rough draft of a script,
which apart from -h and —>-help also understands the
parameters -g and —>-quiet respective as well as -v
which means the same as —>-verbose. -q and -v are
often used either to suppress all outputs except for
serious error messages and/or to comment all actions.
The default setting is the verbose mode via the
variable QuietMode, by setting this to 1 in the second
line. Even if at first sight this looks nonsensical: Since O
is true, we set QuietMode with 1 to false.

Selection menus

The select construction offers an option which is
frequently underestimated. This makes it possible to
construct complex selection menus. Here is a simple
example for choosing between apples, pears and
plums:

#! [bi n/ bash
Fi el d=("appl es" "pears" "pluns" "end")
select fruits in ${field[*]}; do
case $REPLY in
${#field*]1})
return
*)
echo "$Fruits"
esac
done

The content of our array is hidden behind ${field[*]},
in this case four elements, which select numbers in
sequence and outputs one after another:

Now select queries the number of the desired
action, for which read is implicitly used. The result
of the selection is as usual available later in the
variable REPLY. In addition select copies the
corresponding element in our array into the variable
P and executes the body. Once this has been
processed, select shows the selection again.

The rest of the procedure in the body is defined
by means of case. The first pattern looks fairly
unusual at first, but $f#field[*]} is concealing only
the number of elements contained — which is the
same as the number of the last entry. This allows us

Seite 81 $

PROGRAMMING CORNER

Listing 1
#!'/bi n/ bash
Qui et Mbde=1
for Pin $@ do
case $Pin
-h|-H—>-[hH [eE] [I L] [pP])
echo " Command: "
echo " $0 [-h|—-help]|[-q|—-quiet]]|[-Vv|—-verbose]"
echo "Parameter:"

echo " -h, —-help: Thi s brief explanation"
echo" -g, —-quiet: Only report serious errors"
echo " -v, —-verbose: Extensive nessages"

exit

V] -Vl > [WV] [€B] [1RI [bB] [00} [sS] [eE])
Qui et Mbde=1
-ql-Q—>-[oQ WU [i1][eB[tT])
Qui et Mode=0
*)
echo "error: Unknown parameter $i"
exit
esaé’
done
echo $Qui et Mbde

to reliably recognise when the user has selected the
last entry, without having to know its actual number
or name — thus the selection can be expanded at
will, as long as the last entry stands for “exit menu”.

In order to leave select, you must either press
[Ctrl+D] or, as shown in the example, call up return
or break. To this extent, select also differs from all
other loops — it has neither a condition nor a list,
after the processing of which the loop ends.

Unlike read, you cannot give select the prompt
which is to be output as parameter — the standard
return prompt from the variable PS3 is used, which
you can adapt manually:

#!/bi n/ bash
field=("apples" "pears" "plunms" "end")
PS3="\Mich fruits? >"
select fruitsin ${field*]}; do
case $REPLY in
${#field*]})
return
“)
echo "$fruits"
esac
done

That ends the fifth part of Programming Corner.
part 6 will be on the structuring and modularisation
of scripts by means of functions and modules. Using
a small management program we will then recap all
the previous lessons in part 7 and show the
potential applications of the individual commands
and constructs. =

11-2001 LINUX MAGAZINE 81

4

PROGRAMMING

