
KNOW HOW RECOVERY CD

40 LINUX MAGAZINE 11 · 2001

DIY Recovery CDs

SPEEDY
RECOVERY

BERNHARD BABLOK

What gave rise to this whole story was a friend
whose Windows operating system went out on
strike after his wife had installed a game for
children. At this point, it would be fairer to point
out that this was due neither to the fact that a
woman had loaded it, nor that this is because it was
running under Windows. Even under Windows neat
installation routines can be written, but once the
system has been corrupted, usually the only remedy
is re-installation.

Under Windows this is as simple or complicated
as it is under Linux; so it’s not a job which can be
performed by real computer amateurs. A remedy is
provided by the little project proposed here, with
the aid of which even beginners can create a self-
booting CD, which will, after asking ”Do you really
want to ...” make the system workable once more.
Configuration work no longer comes into it.

And for all those who often install and compare
software, such a solution is interesting, too; because
this is a simple way to guarantee identical initial
conditions. And those who feel that they would
happily shoot their system dead, can also be helped
by it. Anyone who has to look after educational PCs
has probably already implemented a similar
procedure in order to get round the constant
installation orgies.

First off, a warning: A recovery CD is no
substitute for data back up. The procedure
described here depends completely on the
hardware. For example, if the hard disk is replaced,
the CD is usually unusable. Another, somewhat
more demanding approach (which will be discussed
at the end), does get round this problem. But there
again, the emphasis lies on the restoration of the
system and not the user data.

Pulling an image

off the hard disk

and if necessary

burning it back without

any problems onto the disk – even

the Linux distributions which fit onto

one diskette come with all the

resources to do this. This article shows

the few commands which are necessary.

040CDRecover.qxd 29.06.2001 20:02 Uhr Seite 40

Create an image

In order to create an image of a hard disk, this must
of course be mounted. So that leaves two options:
Install the hard disk in a second computer or boot
from diskette or CD – either with a mini-distribution
or a special boot CD and back up the image via
the network.

In the first variant the creation of the image
does go somewhat more quickly, but screwing it
into the hardware is not always desirable. The
second variant requires a Linux-supported network
card. This could even be an old ISA-NE2000 card or
a cheap PCI clone for around £10.

One very useful, single-disk version of Linux is
Tomsrtbt. This packs almost everything the heart
could desire onto one oversized diskette. It can be
downloaded via http://www.toms.net/rb/ or a
mirror. It is also very simple to adapt it to your own
requirements to recompose the diskette after
making your own modifications, since the necessary
scripts are also present.

Once the computer has rebooted, the image is
created using the following command:

dd if=/dev/hda bs=... count=... | \
rsh -l burner myhost \
"bzip2 -c > /home/burner/image/hda.bz2"

The command assumes that an image of the first
hard disk is to be dragged to the IDE adapter. Under
SCSI that would be the hard disk /dev /sda. Similarly,

the designations for additional hard disks must be
altered. The command rsh is in fact normally
frowned upon, but the computer, with the CD
burner, must nevertheless still be physically
accessible. This is why the security loophole (due to
rsh) can be ignored in this case.

For the above command to function, a user
burner must be installed on the computer myhost,
which allows remote access via a suitable entry in
/home/burner/.rhosts:

$ cat .rhosts
floppy.bablokb-local.de root

Floppy is the hostname of the computer booted via
the diskette.

The dd command reads out the hard disk. The
necessary parameters bs= (block size) and count=
can be determined using an fdisk -l. On a test
computer, an old laptop with a 2.1GB hard disk, the
command showed that the hard disk possesses 525
cylinders, each with 8064 - 512 bytes. This means
the dd command reads:

dd if=/dev/hda bs=8064b count=525 | ...

The character b here stands for 512 bytes.
Additional figures stand for other factors (which can
be viewed via dd --help). Here, 525 blocks 4MB in
volume have been read out. Since 525 = 5 x 5 x 7 x
3, an equivalent alternative would be the block size
56448b (7 x 8064 = 56448) with the count 75.

KNOW HOWRECOVERY CD

11 · 2001 LINUX MAGAZINE 41

The system guard
showing memory and CPU load.
The drop in the middle was
while writing zeros.

040CDRecover.qxd 29.06.2001 20:02 Uhr Seite 41

Simple inefficiency

It is simple to create the image via the aforementioned
command, but inefficient and very slow. But on the
other hand it is also valid indefinitely. It functions
regardless of how many operating systems are on the
hard disk, and regardless of the file systems used. It is
precisely this latter which is now always a game of
chance under Linux. Reiser FS, Ext3 JFS, each with and
without logical volume manager or software Raid are
just a few of the more recent developments which are
causing more and more problems for classic rescue
disks and backup programs.

In the figure below the KDE-2 system monitor
can be seen on the destination computer during
the creation of the image. In the lower part the
bytes received and in the upper part the CPU
loading are displayed. Notice the gaps that appear
in the network traffic. These are due to the fact
that dd is either reading or writing. Whenever a
new block is being read by the hard disk, the
network and the destination computer take a
break.

Otherwise the slowest link in the chain is bzip2,
which processes the arriving data in 900k blocks. If

the sending computer is faster than the destination
computer, it makes sense to compress the data
before sending.

The whole image creation in this case took
more than an hour, and the destination computer,
at 700MHz, is comparatively fast. More later on
additional details about this figure.

Restore

Once the image has been created, it goes onto a
CD. How that works is explained in the ”Creating
the recovery CD” box. Restore then functions again
after a boot with a floppy local via the following
two commands:

mount /dev/hdc /mnt
bunzip2 -c /mnt/hda.bz2 > /dev/hda

Of course, a restore via the network would also be
possible:

rsh -l burner myhost \
”bunzip2 -c /home/burner/image/hda \.bz2”
$ /dev/hda

In the last case it is vital to make sure the output

KNOW HOW RECOVERY CD

42 LINUX MAGAZINE 11 · 2001

Creating the recovery CD

The recovery CD is created in the usual way under Linux via
Mkisofs/Cdrecord. The file structure appears as follows:

build
| hda.bz2
|
| boot

| hal91.img

The command

mkisofs -b boot/hal91.img -c boot/hal91.cat -o reccd.iso
build

creates the bootable CD-ROM image. The option -b refers to
the bootable diskette image. Another file, the boot
catalogue, also has to be created (option -c), but is
otherwise unimportant. The output file is specified via -o. If
hda.bz2 is a link to the image, the -f option must also be
stated. If the ISO image has been created, the CD can be
burnt using CDrecord or one of its front-ends. In our case, it
looks like this:

cdrecord -v -isosize fs=8m speed=4dev=x,y,z reccd.iso

fs is a buffer memory, speed the rate of the burner and dev
the device of the burner, which can be determined via
cdrecord -scanbus. These three parameters must be adapted
by each person to suit their own circumstances.

Exchange the /linuxrc with HAL91
A Linux boot diskette almost always consists of three parts: a
bootloader, the kernel and a pre-compressed file system.

The file linuxrc is in the root directory of this file system. To
get to the system, the following steps are necessary:

mkdir /tmp/floppy.mnt
mount -o loop hal91.img /tmp/floppy.mnt

The diskette image is mounted via a loop device. The ability
to mount such loop devices has to be compiled into the
kernel, but this is usually the case with standard kernels in
distributions. Then the compressed file system is unpacked
and also mounted via a loop device:

gunzip -c /tmp/floppy.mnt/initrd.gz > initrd
mkdir /tmp/initrd.mnt
mount -o loop initrd /tmp/initrd.mnt

Now we have access to linuxrc and can edit the file as
described in the article:

emacs /tmp/initrd.mnt/linuxrc

After that all the steps are to be executed more or less
backwards:

umount /tmp/initrd.mnt
gzip -9c initrd > /tmp/floppy.mnt/initrd.gz
umount /tmp/floppy.mnt

The HAL91 kernel does not support SCSI devices. So anyone
who has a SCSI device should also swap the kernel. In HAL91
it is called vmloop. Since for our purposes the kernel hardly
has to be able to do anything, apart from access the
corresponding block device and CD-ROM support, the swap
should not be a problem.

040CDRecover.qxd 29.06.2001 20:02 Uhr Seite 42

diversion is not in quotation marks, otherwise the
hard disk will be overwritten by myhost.

But the original objective has not yet quite been
reached, because a normal user cannot be
expected to cope with booting by floppy and
composing cryptic commands. Luckily, everything
can be done automatically.

A CD as floppy substitute

Bootable CDs in accordance with the El Torrito
standard do none other than make the Bios believe
they are a bootable diskette. The recovery CD will
thus, together with the hard disk image, also
contain an image of our boot diskette. Since the
Tomsrtbt floppy is a portrait format diskette it
cannot be used for this purpose.

But mini-distributions are as common as
pebbles on the beach. The best suited for the
recovery CD is for example the boot diskette called
HAL91.

Directly after booting, the kernel executes the
file /linuxrc. We are thus replacing this file from
HAL91 with our own version, which basically
contains the two commands mentioned above
(mount and bunzip2). How this works in detail is
explained at greater length in the listing ”A
modified /linuxrc”.

Since the restore is a fairly destructive matter
and because a normal user is accustomed to the
constant challenges ”Do you really want to ...”, it is
advisable to give the user a last opportunity to stop.
The listing shows one option for this.

Space problems

One important question has not yet been dealt
with: What will fit onto a CD? The aforementioned
laptop hard disk has three partitions. The first with a
capacity of 1GB contains a freshly installed
Windows 98. In addition to this there is a Linux
partition of 800MB with a Mandrake 7.2 installation
and a swap partition with the remaining space.

Originally the computer was only installed in
this configuration in order to test which stunts were
necessary to install Windows 98 as an addon to a
Linux computer – in almost all tests it is only the
reverse case which is investigated and evaluated.

Of the FAT32 partition, 210MB was occupied.
The Ext2 partition on the other hand 674MB. An
image was created, as described above. Surprisingly,
this had more than 635MB and thus did fit onto
one CD, but was much too big for this specific
example.

To check the process, the content of both
partitions was backed up with a classic tar -cvpI. The
compressed Tar archive of the Windows partition was
87MB in size, the Linux archive 195MB. Then the
hard disk was repartitioned (one big Ext2 partition)
and formatted. A newly created image of this almost
empty hard disk still came to a solid 616MB.

The reason for this astonishing size lies in the
fact that repartitioning and reformatting only
changes the administrative information of the hard
disk and partitions. The actual data remains
unaffected. Before the created Tar archives were
played back, the whole hard disk was overwritten
with zeroes:

dd if=/dev/zero of=/dev/hda bs=... count=...

An image of the empty Ext2 partition, with this pre-
processing, only comes to just under 109KB, an
enormous difference from the 616MB determined
at first. Equally, after restoration to its original
condition (with Windows 98 and Mandrake Linux)
the image came to a reasonable size of just under
283MB. In the ”System loading” display, you can
see quite clearly when the zeroes are transferred
and compressed. In the central part the CPU loading
drops dramatically, while the network is more
heavily loaded.

30GB on one CD

The compressed Tar archives show that a Windows
installation can be reduced to just under 41 per
cent, while with Linux it is even possible to attain a
value of under 30 per cent. This is probably due to
the high proportion of text files (for example HTML

KNOW HOWRECOVERY CD

11 · 2001 LINUX MAGAZINE 43

Comparison of bzip2 with gzip
Command\File zero random opt-kde2.tar
bzip2 (bytes) 113 105.321.149 27.893.829
gzip (bytes) 101.801 104.874.289 31.631.186
bzip2 (time) 20.4s 264s 150s
gzip (time) 8.1s 48s 88s
bunzip2 (time) 4.2s 89s 42s
gunzip (time) 4s 12s 5.7s

Listing: a modified /linuxrc
01: #!/bin/sh
02:
03: PATH=”/bin:.”
04: TERM=linux
05: export PATH TERM
06:
07: mount /proc/ /proc -t proc
08:
09: mount -o ro /dev/hdc /mnt
10: echo ”Should the hard disk be overwritten (all data will be lost)?”
11: until [”x$answer” = ”xYES” -o ”x$answer” = ”xNO”]; do
12: echo -n ”Confirm with YES or stop with NO! ”
13: read answer
14: if [”x$answer” = ”xYES”] ; then
15: echo ”overwriting the hard disk. Please wait...”
16: bunzip2 -c /mnt/hda.bz2 > /dev/hda
17: elif [”x$answer” = ”xNO”] ; then
18: echo ”Stop!”
19: fi
20: done
21: umount /mnt
22: echo ”Please remove the CD-ROM and press CTRL-ALT-DEL”
23: sh

040CDRecover.qxd 29.06.2001 20:03 Uhr Seite 43

Info

Homepage of Tomsrtbt:
http://www.toms.net/rb/

HAL91 Homepage:
http://home.tu-

clausthal.de/~incp/hal91/

Freshmeat:
http://www.freshmeat.net

Sourceforge:
http://www.sourceforge.net

MkCDrec Homepage:
http://mkcdrec.ota.be

Partimage Homepage:
http://www.partimage.org

Source of Sfdisk, also part of
MkCDrec: ftp://win.tue.nl

■

KNOW HOW RECOVERY CD

44 LINUX MAGAZINE 11 · 2001

documentation, scripts, configuration files)
under Linux.

An empty (zeroed) 30GB hard
disk in compressed condition

could take up some 1.5MB.
If 2GB of the hard disk are
taken up by a Linux
system, then the image

should still fit onto a
recovery CD. For Windows the

limit is around 1.5GB. Mind you,
these are operating systems and

programs. If compressed applications files, maybe in
MP3 format, are present, the calculation will look
very different. If there are several operating systems
on the hard disk, space on the CD will also soon run
out. But a recovery CD, as described here, is not
suited to such systems anyway.

Optimisations

It may just be acceptable to wait more than an hour
for the image of a 2.1GB disk. But for a really large
hard disk the whole process adds up to more than a
whole day. So which optimisation options exist?

As described, bzip2 and bunzip2 are ultimately
responsible for the time taken to create the image
and to do the restore. A highly practical alternative is
to use gzip/gunzip for this task. In the ”Comparison”
table, sizes and times for compression and
decompression of three files are listed.

The file zero consists of 100MB zeroes (created
from /dev/zero), the file random out of 100MB
random numbers (created out of /dev/urandom)
and the file opt-kde2.tar is an uncompressed Tar
archive from the /opt /kde2 directory of my
computer. The archive also comes to almost 100MB.
It is apparent from the table that with real data a
time gain of about 40 per cent balances out a
reduction in size of some 10 per cent. When the
data is already compressed, the performance gap is
even more marked, plus in this case bzip2 also has
the greater overhead.

But it is only in the case of blank data that a
really significant difference can be noted in the size
of files: bzip2 reduces the 100MB zeroes in the
zero-file to a total of 113 bytes, while gzip still
produces a result which is almost three powers of
ten higher.

With an image, which typically contains data
from these three basic types, the result is obviously
somewhat less extreme. The time saving is only about
30 per cent, while the size increases by 10 per cent.
In the case of large, still mostly vacant disks, though,
the calculation may look rather different again.

Relay race

Another problem is the large number of programs
needed to get the image onto the hard disk of the
destination computer. dd reads the data out and

writes it into a pipe. From there it reads rsh, only to
immediately write it back into a socket. On the
other side the rshd daemon then reads the data
from the socket, writes it into a pipe, from where it
is then met by bzip2. A real relay race is taking place
here between the programs. The ideal would thus
be a network-capable dd, which writes the data
directly into a socket, interacting with an equally
network-capable bzip2, which can read the data
out of a socket. Since the sources are open, these
expansions should not mean any great expense. So
if anyone is looking for an interesting programming
task, they could try their hand at this.

One more important optimisation would be a
dd which can read and write at the same time. The
source computer in this case could send at full
network bandwidth and the throughput from bzip2
would then be the only bottleneck.

Short of just rewriting dd (which would certainly
be the better solution), the variant was also
investigated where the program buffer is
interconnected between dd and rsh and/or before
bzip2. It stores the data in a ring buffer in the main
memory and can read and write at the same time
from there. The only thing to watch for here is that
the memory volume allocated by dd and buffer
combined will still fit into the RAM.

With this double buffering on both sides of the
network it is possible to achieve a time saving of
about 25 per cent with bzip2 and 10 per cent with
gzip. Unfortunately buffers are seldom found on
rescue floppies. Which is one good reason to simply
create your own bootable CD with a comprehensive
Linux system yourself.

Regardless of these optimisations, there is one
hole in the solution described here. There may be
(and in the case of large disks, absolutely certainly) a
huge amount of useless zeroes being read,
transferred and compressed. At block device level,
though, there are only bytes, no contents. An
intelligent alternative definitely requires knowledge
about the contents at file system level.

Alternatives

A short search of the Internet at Freshmeat and
Sourceforge also brings some corresponding
solutions to light. The Belgian project MkCDrec
creates, from a running Linux system, a recovery CD
– or several, if everything will not fit onto one CD.
This is intended for system administrators and
therefore not automated, but that could probably
be easily altered.

The number of file systems supported is limited.
In normal Linux systems, however, MkCDrec has the
great advantages of efficiency and flexibility. The
files are ultimately backed up with Tar. This means
that only actually existing data are stored, plus if
you do a restore a different partitioning is possible.
All in all an extraordinary tool, which is continually
being improved and, for all those who do not

040CDRecover.qxd 29.06.2001 20:03 Uhr Seite 44

necessarily need a solution for inexpert users, the
right choice.

A different approach is offered by Partimage.
This is a low-level tool for backing up partitions. At
the moment FAT16/32, Ext2 and Reiser-FS partitions
are supported. The contents of the partitions are
analysed and only the used blocks are backed up.

The current production version is however even
slower than the dd solution. Firstly, reading the used
blocks is very slow but the compression is done
beforehand on the source computer. On the credit
side, Partimage offers an intuitive interface,
including such things as progress indicators, and the
option of distributing the image over several media.
In an emergency it would be possible to back up a
partition on diskettes.

The latest beta version also has a client-server
mode, implementing a whole range of optimisation
options, such as simultaneous reading and writing
or the encrypted transfer of data to the server.

This version is described as quite stable, but
suffers from the lack of documentation for the log-
in mechanism.

Building on the basis of Partimage, the
following procedure for the creation of an
optimised recovery CD would be possible, if only
the supported file systems are present:
• Reading out the partition information, maybe

with Sfdisk. The program allows the partition
information to be output in a format which can
be used by Sfdisk again as input.

• For each partition a corresponding image file is
created via Partimage.

• The images are burnt, together with the Sfdisk
input file, onto the CD.

• The /linuxrc program of the boot image of the CD
repartitions the hard disk via Sfdisk – using the
corresponding input file – and writes all the
images back onto the hard disk.

The advantage of the last procedure, apart from
faster image creation and faster restore is the option
of backing up larger hard disks, possibly with
several operating systems, on several CDs.

Conclusion

As you have seen, there are various approaches
when it comes to restoring a hard disk. All the
means necessary for this are either supplied with
simple distributions or are freely available on the
Internet.

But a final pointer - all the solutions considered
are unsuitable as back up procedures for normal
user data. Who wants to restore a whole hard disk
or partition just because a corrupted file has to be
replaced? ■

KNOW HOWRECOVERY CD

11 · 2001 LINUX MAGAZINE 45

1/2 ad

040CDRecover.qxd 29.06.2001 20:03 Uhr Seite 45

