
Background

Jakarta is a selection of open source, Java-related
technologies, such as XML parsers, XSLT processors,
regular expressions and portal management.

Due to many projects being implemented in
Java, they’re mostly OS independent, which allows
their widespread use.

Apache is the Web server of choice. It delivers
the content of over half of the sites on the Web, but
until recently it lacked an integrated way of serving
dynamically generated Java content. With the rising
popularity of the Tomcat server (from the Apache-
Jakarta project) this need has begun to be met.

Tomcat is a product of the Apache-Jakarta
project that functions as a Java Servlet and Java
Server pages engine and is one of the most up-to-
date implementations of the Java servlet. A Java
servlet is a small application that receives and
responds to http requests.

Although Tomcat can be run as a stand-alone
servlet engine, its true power becomes clear when
coupled with Apache to help cut down:
• Running the built in Tomcat Web server in

addition to Apache.
• Forcing the user to enter non-standard details

such as the port number in each request.
• Doubling the effort required to administer the

servers.
• Exposing more potential security risks.
Using the two projects together means that you can
harness Apaches features such as:
• Multiple virtual hosts.
• Fast delivery of static content (Tomcat is

optimised for servlet processing).
• An almost infinite number of configuration

options for multiple virtual Web servers that
Apache users require.

Installing Java
This tutorial assumes that you already have an
Apache site that you would like to expand by

adding Java servlets, this will be achieved by adding
the Java Software Development Kit (J2SDK) and
Tomcat to the established site. It will not require a
recompilation of your existing Apache set up if your
Apache allows the use of DSOs. The Java
Development Kit is available from
http://java.sun.com. Download the newest version
from this site (J2SDK at the time of going to press).

Although the J2SDK is free, you do have to sign
an agreement before you can get the software.
Once you have this on the computer that you have
Apache installed on, you’ll need to install the
J2SDK. This procedure varies between Red Hat and
Debian-based distributions; here we will cover the
Red Hat install.

Installing the Java SDK is simple. You should run
the following command:

sh j2sdk-1_3_1-linux-i386-rpm.bin

You’ll be confronted with a licensing agreement to
be accepted in order to install. If you agree to the
license the package will decompress, leaving a
ready-for-install rpm. Next, login as root and install
the rpm with a command similar to:

rpm -i jdk-1.3.1.i386.rpm

1.3.1 in the filename will vary depending upon the
version of the J2SDK you want to install.

FEATURETOMCAT

11 · 2001 LINUX MAGAZINE 21

Tomcat for Apache

EFFICIENT, FLEXIBLE
AND OPEN SOURCE,

CHOOSE ANY THREE
DEAN WILSON AND KIM HAWTIN

Web sites used to be a way

of claiming a personal piece

of the new frontier, a

number of html pages and a

CGI script made a website.

These days with the advent

of P2P sites and e-Commerce

solutions Java is coming into

the limelight both on its own

merits and as a rival to

Microsoft’s .net platform.

Java’s success in this field is

based upon its ability to act

as middleware between

different vendors software

and Open Source projects

such as Apache, Enhydra,

Cocoon and Tomcat.

What is a DSO?

A DSO is a Dynamic Shared Object, in the past whenever you wished to add new
functionality to an existing Apache web server install you would be required to
reconfigure, re-compile and perform a fresh install of the Apache binaries. With
the inclusion of DSO’s in the Apache server this process has been simplified into
compiling an external module into a DSO that Apache can pick up and
incorporate at run time without the base web server needing to be recompiled. If
you are running a Debian based distribution then you’ll need the Apache-dev
package, if its Red Hat based then you’ll need the web server source from
Apache.

■

021Tomcatsbd.qxd 29.06.2001 19:54 Uhr Seite 21

Next, add the Java binaries to your path. You
can do this on a per user basis or a system wide
level. To add Java to the path for a single user edit
.bash_profile in their home directory. Check for the
line that has PATH=$PATH at the start and add the
path of the Java runtime binaries to the PATH
environment variable.

The second step involves adding a line to set the
JAVA_HOME environment variable. Both variables
need to be explicitly exported. A simplified example
is as follows:

PATH=$PATH:/usr/java/jdk1.3.0_02/bin/java
JAVA_HOME=/usr/java/jdk1.3.0_02/
export PATH JAVA_HOME

jdk1.3.0_02 is the version of the software
downloaded. To do this on a system wide level you
need to enter the same changes as before but in the
/etc/profile file. We recommend system-level
application so that they apply to all users. This will
make running Tomcat a much simpler task. You’ll
need to logout and log back in for the
environmental changes to take effect.

You can test that the Java binaries installed
correctly by entering the simple test program
(Boxout HelloWorld.java). Be sure to make the name
of the file the same as the name you entered in the
public class line at the top of the sample code

otherwise the java compiler will give an error similar
to ”class HellWorld is public, should be declared in a
file named HellWorld.java”. To test the code you
will need to type:

javac HelloWorld.java

The compiler will then generate a file named
”HelloWorld.class”, if you then type:

java HelloWorld

You’ll see ”Hello World” printed on the terminal.
This means the J2SDK was successfully installed. If
an error occurs work through the steps again.

Installing Tomcat

The precompiled version of Tomcat is at
http://jakarta.apache.org/ tomcat/index.html
Download the newest stable binary; at the time of
writing this was Tomcat 3.2.2. Move the
compressed tar file to ”/usr/local/”. Extract as
shown. This creates jakarta-tomcat-3.2.2. Then
create a symlink in the jdk external library directory
(below) for the Tomcat servlet jar file and run the
Tomcat startup script :

mv jakarta-tomcat-3.2.2.tar.gz /usr/local/
tar -zxvf jakarta-tomcat-3.2.2.tar.gz
ln -s /usr/local/jakarta-tomcat-3.2.2/lib/U
servlet.jarU
/usr/java/jdk1.3.0_02/jre/lib/ext/servlet.jar
cd jakarta-tomcat-3.2.2/bin
./startup.sh

Once you have run the startup.sh script Tomcat will
output diagnostic messages to the terminal. Tomcat
will run in the background as a daemon but
continue to print messages to that terminal. Any
error messages at this stage mean you’ve set up the
JAVA_HOME or the PATH statements in the user
profiles incorrectly. To restart Tomcat run
./shutdown.sh, then repeat the previous steps. Then
run startup.sh again. Open up a browser and point
it to http://localhost:8080/index.html. If Tomcat is
installed correctly you should see a Tomcat test
page.

In order to test that your environment is
correctly set up and you are ready to move to the
final stage of integrating Apache with Tomcat you
should enter and run the sample servlet presented
in the Sidebar. Open up your editor of choice and
enter the sample code remembering to name the
file ServletHello.java. You should then compile the
java source:

javac ServletHello.java

The compiler should create the ServletHello.class
file. You then need to copy the class file to the
Tomcat directory structure so that the Tomcat server
can execute it when the request HTTP request is
issued from your webbrowser. You should execute
the following:

FEATURE TOMCAT

22 LINUX MAGAZINE 11 · 2001

Resources

For the best place to learn
more about the Apache and

Jakarta projects:
http://www.apache.org/

http://jakarta.apache.org/
For more information on Java

Servlets see:
http://java.sun.com/

For ideas on how to use Java
Servlets or information on
Tomcat configuration see:

http://www.oreilly.com/catalo
g/jservlet2/

http://www.jguru.com/

■

Listing 1:HelloWorld.java
public class HelloWorld
{
public static void main(String[] args)
{
System.out.println(”Hello Java World”);

}
}

Listing 2:ServletHello.java
/* ServletHello.java: Hello world example servlet */
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
//Import all required class’s
public class ServletHello extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException
{
response.setContentType(”text/html”);
//This sets the type of the response
PrintWriter toClient = response.getWriter();
//This sets the output character stream
toClient.println(”<html>”);
toClient.println(”<head>”);
toClient.println(”<title> This is a test page</title>”);
toClient.println(”</head>”);
toClient.println(”<body>”);
toClient.println(”<p>Welcome to tomcat!</p>”);
toClient.println(”</body></html>”);
}

}

021Tomcatsbd.qxd 29.06.2001 19:54 Uhr Seite 22

cp ServletHello.class U
/usr/local/jakarta-tomcat-3.2.2/webapps/exaU
mples/WEB-INF/classes/

Point your web browser at the following:

http://localhost:8080/examples/servlet/ServlU
etHello

You should be rewarded with a page with the
following text ”Welcome to Tomcat!”, if the
request succeeded. If you get a ‘file not found error’
or 404, then check the output of Tomcat on the
terminal you started it on. An example of this is:

Ctx(/examples): 404 R(/examples + /servletU
/ServletHell + null) null

ServletHell in this case is probably a typo. Check the
URL that you entered in your browser. If these errors
persist compare the name of the Java class you
requested in your browser to the name of the class
file you copied into the Tomcat directory tree.

Configuring Apache

In order for the Apache server to be able to
communicate with the Tomcat Server you need to
download a DSO called mod_jk.so. This is available
as part of the Jakarta project and can be
downloaded from:

http://jakarta.apache.org/builds/jakarta-tomU
cat/release/v3.2.2/bin/linux/i386/"

You should have two options, a mod_jk.so-eapi and
mod_jk.so-noeapi. Download the mod_jk.so-eapi
version. This then needs to be moved to the correct
place under the Apache directory tree. The Tomcat
and Apache configuration files need to be updated
to reflect the new functionality.

mv mod_jk.so-eapi /usr/lib/apache/mod_jk.so

By moving the module to this location Apache
knows that it needs to load it when restarted. You
then need to make the changes to the Apache and
Tomcat configuration files before restarting the
Apache server. In httpd.conf (Which you can find by
issuing a locate httpd.conf) you need to make the
following amendments. At the end of the
LoadModule section you should put the
following line:

LoadModule jk_module modules/mod_jk.so

Add to the end of the AddModule section:

AddModule mod_jk.c
<IfModule mod_jk.c>
JkWorkersFile /usr/local/src/jakarta-tomcatU
-3.2.2/conf/workers.properties
JkLogFile logs/jk.log
JkLogLevel warn
JkMount /examples/* ajp13
</IfModule>

You need to ensure that the path to the
workers.properties file is correct, you can check this
by issuing a locate workers.properties command
and editing the path in the configuration file as
required. You also need to create a log file for the jk
module, this can be done with a simple:

touch /usr/local/src/jakarta-tomcat-3.2.2/loU
gs/jk.log

Configuring Tomcat

For each context in your Tomcat configuration file
you need to add a JkMount line to your httpd.conf
file. This is so that Apache can forward requests to
the correct Tomcat handler for processing. Apache
supports the Ajp12 protocol used with JServ.
Tomcat uses the new Ajp13 protocol for new
functionality, and so you need to add support for
the new protocol.

In the configuration file for Tomcat, server.xml
you need to add after the existing Ajp12 section the
following request handler:

<!-- Apache AJP13 support. This is also useU
d to shut down tomcat. -->
<Connector className="org.apache.tomcat.seU

rvice.PoolTcpConnector">
<Parameter name="handler"

value="org.apache.tomcat.service.connector.U
Ajp13ConnectionHandler"/>

<Parameter name="port" value="8009"/>
</Connector>

After adding these lines to your configuration file
you will need to restart the Tomcat server with the
shutdown.sh and startup.sh scripts. Once the
Tomcat server has successfully re-initialised you can
open your web browser and point it at:

http://localhost/examples/servlet/ServletHello

You should see the servlet output sent straight to
your browser from Apache.

Server Initialisation

So that Apache and Tomcat start and stop like other
servers, we recommend that you add Tomcat to the
Apache initialisation script or create a separate
initialisation script .

Conclusion

We’ve only covered the basic Tomcat and Apache
set-ups. Servlets and Java Server Pages are powerful
tools for producing dynamic content for Web-based
applications. The joint use of Tomcat and Apache
gives all the strengths of Apache’s fast static content
delivery and near infinite configuration options and
Tomcats flexible content delivery to produce an
open source solution that rivals the best commercial
offerings. ■

About the Authors:
Dean Wilson: Professional
Developer, using Linux as a
serious alternative to
commercial offerings.
Kim Hawtin: UNIX Systems
Administrator, dabbling in all
things network-related,
preferably without wires.

FEATURETOMCAT

11 · 2001 LINUX MAGAZINE 23

Contexts in Tomcat

Tomcat can manage multiple
web applications. Each web
application is a collection of
files such as Java Servlets,
html, JSP files and other
resources that are required for
the web application to
function. Each web application
can be deployed separately, in
a context. This is useful to test
your Java servlet with
different versions of
supporting Jar files. For
example using several
different XML parsers, or XSLT
processors.

■

021Tomcatsbd.qxd 29.06.2001 19:54 Uhr Seite 23

