
They're the stars of any large
computing centre – the robots

which equip the tape
drives of commercial data

storage facilities. While
there's no shortage of

memory space there, smaller
users are still faced with

probing the mass of data to be
backed up and actually

creating copies.
But there is another principle of

these central data back up systems which you
shouldn't shy away from. There may be a couple of
fat server computers directly attached to the
storage server. If workstations in the next room, at
the other end of the campus or from the client
company in the city centre have to be backed up,
the back up data migrate via LAN, dial-up or
dedicated line into the storage system.

Data vehicles

The key phrase here is remote backup, and
this can be done even when one has a

small LAN or sufficient space on another computer
on the Internet. The only requirement is that there is
server software running on the backup computer
which allows log ons from remote computers.

Nowadays this will be a secure shell server
(sshd). On some machines, you will also still find
Remote-Shell-Daemons rshd, but since this means
the data is transferred unencrypted, this should only
be considered in a well-secured LAN, in which all
users are trustworthy.

To mirror the data (where synchronous copies of
original data are made on separate media) there are
two possible programs: rdist and rsync. The original
rdist is no longer being actively developed, but there
are still projects such as freerdist

(http://freshmeat.net/projects/freerdist/), which can
at least show last-amended data. And not very
much will change in terms of functionality in future
– which can certainly be an advantage.

In the case of rsync
(http://rsync.samba.org/rsync/) the authors are more
energetic. This program has the advantage that,
where files have changed, it only transfers the
changes. rdist sends the complete file again. If you
want to keep the transfer volume as low as
possible, this is a crucial criterion for
decision-making.

Otherwise it really depends on your individual
taste. Neither has yet been the serious target of GUI
programmers, so you will still have to get to grips
with the syntax, which takes some getting used to.

Since we devoted a long article to rsync in
Answer Girl (Linux Magazine issue 9, p. 84 ff), we
will now cover the alternative product.

Remote distribution

Before you can configure the data mirroring, it is
worthwhile making sure that rdist is installed not
only on the system with the data to be backed up,
but also on the destination system. The rdist client
may not necessarily be installed, but the rdist
daemon rdistd must, because this is called on when
it comes to data comparison.

If rdistd is not on the search path to the destination
account, it is best to note down where it is.

On the computer with the data to be
duplicated, you must take the rdist client by the
hand. In the first instance, this will only know the
Path to the secure shell client ssh and perhaps the
name and path of its configuration file:

/tmp$ rdist -P 'which ssh' -f ~/distfile

If the rdistd cannot be found on the destination
system without precise path specification, there is

FEATURE RDIST

54 LINUX MAGAZINE 12 · 2001

Remote Backups with Rsync and Rdist

SECURITY
MIRRORING

PATRICIA JUNG

You don't have to use classic data back up methods.

If you're part of a local network or have an Internet

connection, you could use remote back up.

still the option -p /path/to/backupcomputers/rdistd.
If there is a file named distfile or Distfile in the

current directory, the -f option can also be left out:

~$ rdist -P /usr/bin/ssh

But this file is not to be sniffed at, since it contains
all the details on what, how and to where it is to be
duplicated. Several entries are possible here, so that
different copy rules can be specified for various
directories. If you like, you can back up the data for
your thesis on a uni account, while love letters
would be better backed up on the second computer
in the home LAN.

Each entry begins with a name for the following
rule and a colon. The former can be anything you
like, but can only be one word without a space.
Then comes the specification of what is to be
copied. This can be directories or just individual files.
If there are several specifications separated by
colons, everything must be enclosed in a pair of
round brackets.

Next comes a stylised arrow, ->, pointing to the
address of the destination computer. If you have a
different username on the other system, this is
written in front, as with an email address. In that
case, a @ separates user name and host name.

Thus, a distfile with the following content ...

private: (~/.netscape/bookmarks.html \
~/private \
~/letters) -> trish@192.168.1.249

thesis: /home/trish/thesis -> lillegroenn.trU
ish.de

... is saying that the directories ~/private and
~/letters together with the Netscape bookmarks
should land in the account of trish on the computer
with the IP address 192.168.1.249, while the
directory /home/trish/thesis with all its sub-
directories, should be shovelled onto the computer
lillegroenn.trish.de.

Destination anywhere?

What's missing now is the Where To on the
destination computers. This is specified with install:

install /mnt/backup;

ensures that the respective data lands under
/mnt/backup on the destination system. If there isn't
one, rdist (to be precise, the rdistd called up by it on
the destination computer) also makes this directory.
What matters here is the semicolon at the
command end.

There are a few commands such as install,
which modify the action of rdist; we shall pick out
two more at this point, which are of general interest
with respect to backups: except_pat excludes files
and directories from the backup which corresponds
to the pattern specified.

except_pat tmp;

ensures that tmp directories, but also files such as
wtmp or chapter1.tmp are not backed up at the
same time. One can specify several patterns in
round brackets, and regular expressions can be used
to a certain degree. So

except_pat (\\.tgz\$ [Tt][mM][pP]);

ensures that all files ending in .tgz (\$ stands for the
end of the file name) and all files/directories with
tmp in any combination of upper and lower case
letters are excluded from the backup. Since the dot
is meant, not as a regular expression for any symbol,
but as a dot, there must be a \ in front, and as this,
too, is a special symbol, another backslash is placed
in front of that.

The command

notify pjung@linux-magazine.co.uk;

in turn ensures that pjung@linux-magazine.co.uk
receives an e-mail, in which rdist reports on the
work performed.

Equipped with all these options, distfile then
looks e.g. as in Listing 1. Comments are – as usual
in the shell – preceded by a #.

Doppelgängers

Provided you leave the back up space in peace,
everything is hunky-dory. Nevertheless, now and
then you change one file or another and do not
want the back up to ruthlessly overwrite these
changes. To inspire in rdist a little consideration at
this point for files which are newer on the
destination system than on the source computer,
the quick and easy option -o younger is added to
the rdist call up.

And a contrary approach is also possible: If you
want to ruthlessly destroy everything on the back
up system which does not exist on the original
system, specify the option -o remove on the
command line.

Of course, that does not bring us to the furthest
limit of fine tuning. The rdist man page can become
your constant companion when planning a backup. ■

FEATURERDIST

12 · 2001 LINUX MAGAZINE 55

Listing 1: Example of an rdist distfile
private: (~/private ~/letters) -> trish@192.168.1.249

install /mnt/backup/private;
except_pat tmp;

thesis: /home/trish/thesis -> lillegroenn.trish.de
install ~/backup;
except_pat (\\.tgz\$ [Tt][mM][pP]);
notify pjung@linux-magazine.co.uk;

Copy the Netscape bookmarks on the spot
bookmarks: ~/.netscape/bookmarks.html -> lillegroenn.trish.de

install ~/.netscape/bookmarks.html;

